Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Int J Biol Sci ; 20(9): 3269-3284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993552

RESUMEN

Background: Lenvatinib is the most common multitarget receptor tyrosine kinase inhibitor for the treatment of advanced hepatocellular carcinoma (HCC). Acquired resistance to lenvatinib is one of the major factors leading to the failure of HCC treatment, but the underlying mechanism has not been fully characterized. Methods: We established lenvatinib-resistant cell lines, cell-derived xenografts (CDXs) and patient-derived xenografts (PDXs) and obtained lenvatinib-resistant HCC tumor tissues for further study. Results: We found that ubiquitin-specific protease 14 (USP14) was significantly increased in lenvatinib-resistant HCC cells and tumors. Silencing USP14 significantly attenuated lenvatinib resistance in vitro and in vivo. Mechanistically, USP14 directly interacts with and stabilizes calcium- and integrin-binding protein 1 (CIB1) by reversing K48-linked proteolytic ubiquitination at K24, thus facilitating the P21-activated kinase 1 (PAK1)-ERK1/2 signaling axis. Moreover, in vivo adeno-associated virus 9 mediated transduction of CIB1 promoted lenvatinib resistance in PDXs, whereas CIB1 knockdown resensitized the response of PDXs to lenvatinib. Conclusions: These findings provide new insights into the role of CIB1/PAK1-ERK1/2 signaling in lenvatinib resistance in HCC. Targeting CIB1 and its pathways may be a novel pharmaceutical intervention for the treatment of lenvatinib-resistant HCC.


Asunto(s)
Carcinoma Hepatocelular , Resistencia a Antineoplásicos , Neoplasias Hepáticas , Compuestos de Fenilurea , Quinolinas , Ubiquitina Tiolesterasa , Quinasas p21 Activadas , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Humanos , Quinolinas/farmacología , Quinolinas/uso terapéutico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Animales , Quinasas p21 Activadas/metabolismo , Quinasas p21 Activadas/genética , Ratones , Línea Celular Tumoral , Sistema de Señalización de MAP Quinasas , Ratones Desnudos , Ubiquitinación
2.
J Hepatocell Carcinoma ; 11: 787-800, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737384

RESUMEN

Background: Anti-programmed death-1 (PD1) antibodies have changed the treatment landscape for hepatocellular carcinoma (HCC) and exhibit promising treatment efficacy. However, the majority of HCCs still do not respond to anti-PD-1 therapy. Methods: We analyzed the expression of CXCL9 in blood samples from patients who received anti-PD-1 therapy and evaluated its correlation with clinicopathological characteristics and treatment outcomes. Based on the results of Cox regression analysis, a nomogram was established for predicting HCC response to anti-PD-1 therapy. qRT‒PCR and multiple immunofluorescence assays were utilized to analyze the proportions of N1-type neutrophils in vitro and in tumor samples, respectively. Results: The nomogram showed good predictive efficacy in the training and validation cohorts and may be useful for guiding clinical treatment of HCC patients. We also found that HCC cell-derived CXCL9 promoted N1 polarization of neutrophils in vitro and that AMG487, a specific CXCR3 inhibitor, significantly blocked this process. Moreover, multiple immunofluorescence (mIF) showed that patients with higher serum CXCL9 levels had greater infiltration of the N1 phenotype of tumor-associated neutrophils (TANs). Conclusion: Our study highlights the critical role of CXCL9 as an effective biomarker of immunotherapy efficacy and in promoting the polarization of N1-type neutrophils; thus, targeting the CXCL9-CXCR3 axis could represent a novel pharmaceutical strategy to enhance immunotherapy for HCC.

3.
Int Immunopharmacol ; 131: 111863, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38492340

RESUMEN

BACKGROUND: Lymphocyte-related factors were associated with survival outcome of different types of cancers. Nevertheless, the association between lymphocytes-related factors and tumor response of immunotherapy remains unclear. METHODS: This is a retrospective study. Eligible participants included patients with unresectable or advanced hepatocellular carcinoma (HCC) who underwent immunotherapy as their first-line treatment. Radiological assessment of tumor response adhered to RECIST 1.1 and HCC-specific modified RECIST (mRECIST) criteria. Univariate and multivariate logistic analyses were employed to analyze clinical factors associated with tumor response. Kaplan-Meier survivial analysis were employed to compare progression-free survival (PFS) and overall survival (OS) across different clinical factors. Furthermore, patients who received treatment with either a combination of bevacizumab and anti-PD-1(L1) antibody (Beva group) or tyrosine-kinase inhibitor (TKI) and anti-PD-1 antibody (TKI group) were examined to explore the relation between clinical factors and tumor response. RESULTS: A total of 208 patients were enrolled in this study. The median PFS and OS were 9.84 months and 24.44 months,respectively. An independent factor associated with a more favorable tumor response to immunotherapy was identified when PLR<100. Patients with PLR<100 had longer PFS than other patients, while OS showed no significant difference. Further analysis revealed that PLR exhibited superior prognostic value in patients of the Beva group as compared to those in the TKI group. CONCLUSIONS: There exisits an association between PLR and tumor response as well as survival outcomes in patients receiving immunotherapy, particularly those treated with the combination of bevacizumab and anti-PD-1.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Bevacizumab/uso terapéutico , Estudios Retrospectivos , Neoplasias Hepáticas/terapia , Linfocitos , Pronóstico , Inmunoterapia
4.
Cancer Res ; 84(11): 1817-1833, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38484085

RESUMEN

Immune checkpoint inhibitors have limited efficacy in hepatocellular carcinoma (HCC). Macrophages are the most abundant immune cells in HCC, suggesting that a better understanding of the intrinsic processes by which tumor cells regulate macrophages could help identify strategies to improve response to immunotherapy. As signaling lymphocytic activation molecule (SLAM) family members regulate various immune functions, we investigated the role of specific SLAM receptors in the immunobiology of HCC. Comparison of the transcriptomic landscapes of immunotherapy-responsive and nonresponsive patients with advanced HCC identified SLAMF7 upregulation in immunotherapy-responsive HCC, and patients with HCC who responded to immunotherapy also displayed higher serum levels of SLAMF7. Loss of Slamf7 in liver-specific knockout mice led to increased hepatocarcinogenesis and metastasis, elevated immunosuppressive macrophage infiltration, and upregulated PD-1 expression in CD8+ T cells. HCC cell-intrinsic SLAMF7 suppressed MAPK/ATF2-mediated CCL2 expression to regulate macrophage migration and polarization in vitro. Mechanistically, SLAMF7 associated with SH2 domain-containing adaptor protein B (SHB) through its cytoplasmic 304 tyrosine site to facilitate the recruitment of SHIP1 to SLAMF7 and inhibit the ubiquitination of TRAF6, thereby attenuating MAPK pathway activation and CCL2 transcription. Pharmacological antagonism of the CCL2/CCR2 axis potentiated the therapeutic effect of anti-PD-1 antibody in orthotopic HCC mouse models with low SLAMF7 expression. In conclusion, this study highlights SLAMF7 as a regulator of macrophage function and a potential predictive biomarker of immunotherapy response in HCC. Strategies targeting CCL2 signaling to induce macrophage repolarization in HCC with low SLAMF7 might enhance the efficacy of immunotherapy. SIGNIFICANCE: CCL2 upregulation caused by SLAMF7 deficiency in hepatocellular carcinoma cells induces immunosuppressive macrophage polarization and confers resistance to immune checkpoint blockade, providing potential biomarkers and targets to improve immunotherapy response in patients.


Asunto(s)
Carcinoma Hepatocelular , Quimiocina CCL2 , Inmunoterapia , Neoplasias Hepáticas , Macrófagos , Ratones Noqueados , Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Animales , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética , Humanos , Ratones , Inmunoterapia/métodos , Quimiocina CCL2/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Transducción de Señal , Ratones Endogámicos C57BL , Línea Celular Tumoral
5.
Cancer Immunol Immunother ; 73(3): 56, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38367070

RESUMEN

BACKGROUND: The efficacy of immune checkpoint inhibitors (ICIs) in hepatocellular carcinoma (HCC) is poor and great heterogeneity among individuals. Chemokines are highly correlated with tumor immune response. Here, we aimed to identify an effective chemokine for predicting the efficacy of immunotherapy in HCC. METHODS: Chemokine C-C motif ligand 21 (CCL21) was screened by transcriptomic analysis in tumor tissues from HCC patients with different responses to ICIs. The least absolute shrinkage and selection operator (LASSO) regression analysis was conducted to construct a predictive nomogram. Neutrophils in vitro and HCC subcutaneous tumor model in vivo were applied to explore the role of CCL21 on the tumor microenvironment (TME) of HCC. RESULTS: Transcriptome analysis showed that CCL21 level was much higher in HCC patients with response to immunotherapy. The predictive nomogram was constructed and validated as a classifier. CCL21 could inhibit N2 neutrophil polarization by suppressing the activation of nuclear factor kappa B (NF-κB) pathway. In addition, CCL21 enhanced the therapeutic efficacy of ICIs. CONCLUSION: CCL21 may serve as a predictive biomarker for immunotherapy response in HCC patients. High levels of CCL21 in TME inhibit immunosuppressive polarization of neutrophils. CCL21 in combination with ICIs may offer a novel therapeutic strategy for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Quimiocina CCL21 , Neutrófilos , Neoplasias Hepáticas/terapia , Inmunoterapia , Microambiente Tumoral
6.
Liver Cancer ; 12(3): 262-276, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37601982

RESUMEN

Introduction: Lenvatinib plus an anti-PD-1 antibody has shown promising antitumor effects in patients with advanced hepatocellular carcinoma (HCC), but with clinical benefit limited to a subset of patients. We developed and validated a radiomic-based model to predict objective response to this combination therapy in advanced HCC patients. Methods: Patients (N = 170) who received first-line combination therapy with lenvatinib plus an anti-PD-1 antibody were retrospectively enrolled from 9 Chinese centers; 124 and 46 into the training and validation cohorts, respectively. Radiomic features were extracted from pretreatment contrast-enhanced MRI. After feature selection, clinicopathologic, radiomic, and clinicopathologic-radiomic models were built using a neural network. The performance of models, incremental predictive value of radiomic features compared with clinicopathologic features and relationship between radiomic features and survivals were assessed. Results: The clinicopathologic model modestly predicted objective response with an AUC of 0.748 (95% CI: 0.656-0.840) and 0.702 (95% CI: 0.547-0.884) in the training and validation cohorts, respectively. The radiomic model predicted response with an AUC of 0.886 (95% CI: 0.815-0.957) and 0.820 (95% CI: 0.648-0.984), respectively, with good calibration and clinical utility. The incremental predictive value of radiomic features to clinicopathologic features was confirmed with a net reclassification index of 47.9% (p < 0.001) and 41.5% (p = 0.025) in the training and validation cohorts, respectively. Furthermore, radiomic features were associated with overall survival and progression-free survival both in the training and validation cohorts, but modified albumin-bilirubin grade and neutrophil-to-lymphocyte ratio were not. Conclusion: Radiomic features extracted from pretreatment MRI can predict individualized objective response to combination therapy with lenvatinib plus an anti-PD-1 antibody in patients with unresectable or advanced HCC, provide incremental predictive value over clinicopathologic features, and are associated with overall survival and progression-free survival after initiation of this combination regimen.

7.
J Immunother Cancer ; 11(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37385725

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a malignancy with limited treatment options and poor prognosis. Macrophages are enriched in the HCC microenvironment and have a significant impact on disease progression and therapy efficacy. We aim to identify critical macrophages subsets involved in HCC development. METHODS: Macrophage-specific marker genes were identified through single-cell RNA sequencing analyses. The clinical significance of macrophages with palmitoyl-protein thioesterase 1 (PPT1) positive was investigated in 169 patients with HCC from Zhongshan Hospital using immunohistochemistry and immunofluorescence. The immune microenvironment of HCC and the functional phenotype of PPT1+ macrophages were explored using cytometry by time-of-flight (CyTOF) and RNA sequencing. RESULTS: Single-cell RNA sequencing analyses revealed that PPT1 was predominantly expressed in macrophages in HCC. Intratumoral PPT1+ macrophages abundance was associated with inferior survival durations of patients and an independent risk factor of prognosis for HCC. High throughput analyses of immune infiltrates showed that PPT1+ macrophage-enriched HCCs were characterized by high infiltration of CD8+ T cells with increased programmed death-1 (PD-1) expression. PPT1+ macrophages exhibited higher galectin-9, CD172a, and CCR2 levels but lower CD80 and CCR7 levels than PPT1- macrophages. Pharmacological inhibition of PPT1 by DC661 suppressed mitogen-activated protein kinase (MAPK) pathway activity but activated nuclear factor kappa B (NF-κB) pathway in macrophages. In addition, DC661 enhanced the therapeutic efficacy of anti-PD-1 antibody in the HCC mouse model. CONCLUSIONS: PPT1 is mainly expressed in macrophages in HCC and promotes immunosuppressive transformation of macrophages and tumor microenvironment. PPT1+ macrophage infiltration is associated with poor prognosis of patients with HCC. Targeting PPT1 may potentiate the efficacy of immunotherapy for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/terapia , Linfocitos T CD8-positivos , Neoplasias Hepáticas/terapia , Inmunoterapia , Inmunosupresores , Microambiente Tumoral
8.
Hepatol Int ; 17(6): 1461-1476, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37217808

RESUMEN

BACKGROUND: Relapse of hepatocellular carcinoma (HCC) due to vascular invasion is common, but the genomic mechanisms remain unclear, and molecular determinants of high-risk relapse cases are lacking. We aimed to reveal the evolutionary trajectory of microvascular invasion (MVI) and develop a predictive signature for relapse in HCC. METHODS: Whole-exome sequencing was performed on tumor and peritumor tissues, portal vein tumor thrombus (PVTT), and circulating tumor DNA (ctDNA) to compare the genomic profiles between 5 HCC patients with MVI and 5 patients without MVI. We conducted an integrated analysis of exome and transcriptome to develop and validate a prognostic signature in two public cohorts and one cohort from Zhongshan Hospital, Fudan University. RESULTS: Shared genomic landscapes and identical clonal origins among tumor, PVTT, and ctDNA were observed in MVI ( +) HCC, suggesting that genomic changes favoring metastasis occur at the primary tumor stage and are inherited in metastatic lesions and ctDNA. There was no clonal relatedness between the primary tumor and ctDNA in MVI ( - ) HCC. HCC had dynamic mutation alterations during MVI and exhibited genetic heterogeneity between primary and metastatic tumors, which can be comprehensively reflected by ctDNA. A relapse-related gene signature named RGSHCC was developed based on the significantly mutated genes associated with MVI and shown to be a robust classifier of HCC relapse. CONCLUSIONS: We characterized the genomic alterations during HCC vascular invasion and revealed a previously undescribed evolution pattern of ctDNA in HCC. A novel multiomics-based signature was developed to identify high-risk relapse populations.


Asunto(s)
Carcinoma Hepatocelular , ADN Tumoral Circulante , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , ADN Tumoral Circulante/genética , Secuenciación del Exoma , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Invasividad Neoplásica , Recurrencia
9.
Cell Reprogram ; 25(3): 91-98, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37172278

RESUMEN

The tumor microenvironment (TME) plays a crucial role in tumor initiation, growth and metastasis. Metabolic enzymes involved in tumor glycolytic reprogramming, including hexokinase, pyruvate kinase, and lactate dehydrogenase, not only play key roles in tumorigenesis and maintaining tumor cell survival, but also take part in the modulation of the TME. Many studies have been devoted to the role of key glycolytic enzymes in the TME over the past decades. We summarize the studies on the role of glycolytic enzymes in the TME of these years and found that glycolytic enzymes remodel the TME primarily through regulating immune escape, angiogenesis, and affecting stromal cells and exosomes. Notably, abnormal tumor vascular system, peritumoral stromal cells, and tumor immunosuppressive microenvironment are important contributors to the failure of antitumor therapy. Therefore, we discuss the mechanisms of regulation by key glycolytic enzymes that may contribute to a promising biomarker for therapeutic intervention. We argue that targeting key glycolytic enzymes in combination with antiprogrammed cell death ligand 1 or antivascular endothelial growth factor could emerge as the more integrated and comprehensive antitumor treatment strategy.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Glucólisis
10.
BMC Cancer ; 23(1): 416, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37158833

RESUMEN

BACKGROUND: Pathologic complete response (pCR) following preoperative systemic therapy is associated with improved outcomes after subsequent liver transplant/resection in hepatocellular carcinoma (HCC). However, the relationship between radiographic and histopathological response remains unclear. METHODS: We retrospectively examined patients with initially unresectable HCC who received tyrosine kinase inhibitor (TKI) plus anti-programmed death 1 (PD-1) therapy before undergoing liver resection between March 2019 and September 2021 across 7 hospitals in China. Radiographic response was evaluated using mRECIST. A pCR was defined as no viable tumor cells in resected samples. RESULTS: We included 35 eligible patients, of whom 15 (42.9%) achieved pCR after systemic therapy. After a median follow-up of 13.2 months, tumors recurred in 8 non-pCR and 1 pCR patient. Before resection, there were 6 complete responses, 24 partial responses, 4 stable disease cases, and 1 progressive disease case, per mRECIST. Predicting pCR by radiographic response yielded an area under the receiver operating characteristic curve (AUC) of 0.727 (95% CI: 0.558-0.902), with an optimal cutoff value of 80% reduction in the enhanced area in MRI (called major radiographic response), which had a 66.7% sensitivity, 85.0% specificity, and a 77.1% diagnostic accuracy. When radiographic response was combined with α-fetoprotein response, the AUC was 0.926 (95% CI: 0.785-0.999); the optimal cutoff value was 0.446, which had a 91.7% sensitivity, 84.6%, specificity, and an 88.0% diagnostic accuracy. CONCLUSIONS: In patients with unresectable HCC receiving combined TKI/anti-PD 1 therapy, major radiographic response alone or combined with α-fetoprotein response may predict pCR.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/tratamiento farmacológico , alfa-Fetoproteínas , Estudios Retrospectivos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/tratamiento farmacológico , Recurrencia Local de Neoplasia/diagnóstico por imagen , Inmunoterapia , Inhibidores de Proteínas Quinasas/uso terapéutico
11.
Gastroenterology ; 164(7): 1261-1278, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36863689

RESUMEN

BACKGROUND & AIMS: The therapeutic effect of immune checkpoint inhibitors (ICIs) is poor in hepatocellular carcinoma (HCC) and varies greatly among individuals. Schlafen (SLFN) family members have important functions in immunity and oncology, but their roles in cancer immunobiology remain unclear. We aimed to investigate the role of the SLFN family in immune responses against HCC. METHODS: Transcriptome analysis was performed in human HCC tissues with or without response to ICIs. A humanized orthotopic HCC mouse model and a co-culture system were constructed, and cytometry by time-of-flight technology was used to explore the function and mechanism of SLFN11 in the immune context of HCC. RESULTS: SLFN11 was significantly up-regulated in tumors that responded to ICIs. Tumor-specific SLFN11 deficiency increased the infiltration of immunosuppressive macrophages and aggravated HCC progression. HCC cells with SLFN11 knockdown promoted macrophage migration and M2-like polarization in a C-C motif chemokine ligand 2-dependent manner, which in turn elevated their own PD-L1 expression by activating the nuclear factor-κB pathway. Mechanistically, SLFN11 suppressed the Notch pathway and C-C motif chemokine ligand 2 transcription by binding competitively with tripartite motif containing 21 to the RNA recognition motif 2 domain of RBM10, thereby inhibiting tripartite motif containing 21-mediated RBM10 degradation to stabilize RBM10 and promote NUMB exon 9 skipping. Pharmacologic antagonism of C-C motif chemokine receptor 2 potentiated the antitumor effect of anti-PD-1 in humanized mice bearing SLFN11 knockdown tumors. ICIs were more effective in patients with HCC with high serum SLFN11 levels. CONCLUSIONS: SLFN11 serves as a critical regulator of microenvironmental immune properties and an effective predictive biomarker of ICIs response in HCC. Blockade of C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 signaling sensitized SLFN11low HCC patients to ICI treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ligandos , Macrófagos/metabolismo , Receptores de Quimiocina/metabolismo , Receptores de Quimiocina/uso terapéutico , Línea Celular Tumoral , Microambiente Tumoral , Quimiocina CCL2 , Proteínas de Unión al ARN/metabolismo , Proteínas Nucleares/metabolismo
13.
Cell Death Dis ; 14(2): 79, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732324

RESUMEN

Multidrug resistance is a major challenge in treating advanced hepatocellular carcinoma (HCC). Although recent studies have reported that the multidrug resistance phenotype is associated with abnormal DNA methylation in cancer cells, the epigenetic mechanism underlying multidrug resistance remains unknown. Here, we reported that the level of 5-hydroxymethylcytosine (5-hmC) in human HCC tissues was significantly lower than that in adjacent liver tissues, and reduced 5-hmC significantly correlated with malignant phenotypes, including poor differentiation and microvascular invasion; additionally, loss of 5-hmC was related to chemotherapy resistance in post-transplantation HCC patients. Further, the 5-hmC level was regulated by ten-eleven translocation 2 (TET2), and the reduction of TET2 in HCC contributes to chemotherapy resistance through histone acetyltransferase P300/CBP-associated factor (PCAF) inhibition and AKT signaling hyperactivation. In conclusion, loss of 5-hmC induces chemotherapy resistance through PCAF/AKT axis and is a promising chemosensitivity prediction biomarker and therapeutic target for HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Proteínas Proto-Oncogénicas c-akt , 5-Metilcitosina
14.
Cancer Med ; 12(8): 9202-9212, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36790032

RESUMEN

OBJECTIVE: Lenvatinib plus anti-programmed death-1 (anti-PD-1) antibody combinations have shown potent anti-tumor effect in phase I/II trials in advanced or unresectable hepatocellular carcinoma (HCC), but real-world data are limited. METHODS: To investigate the effectiveness and safety of lenvatinib plus anti-PD-1 antibodies in a real-world cohort, we retrospectively evaluated 210 patients with unresectable or advanced HCC treated with these regimens between October 2018 and February 2022. RESULTS: The objective response rate and disease control rate per Response Evaluation Criteria in Solid Tumors (RECIST) v1.1 were 28.1% and 75.2%. Median overall survival (OS) and progression-free survival (PFS) in the overall cohort were 17.2 and 8.4 months, respectively. Median OS and PFS of patients receiving first-line treatment reached 18.9 and 9.6 months. Median OS was significantly longer in patients with Child-Pugh class A versus B (18.8 vs. 5.9 months, respectively), as was median PFS (9.1 vs. 4.4 months). Patients with albumin-bilirubin (ALBI) grade 1 versus grade 2/3 also had significantly greater median OS (23.5 vs. 13.4 months). Treatment-related adverse events (AEs) occurred in 79.5% of patients. Patients with ALBI grade 2/3 had a higher rate of grade 3/4 AEs than patients with ALBI grade 1 (57.5% vs. 38.5%). CONCLUSION: Lenvatinib combined with anti-PD-1 antibody therapy was effective in patients with sufficient liver function reserve. Further study is needed to improve therapeutic efficacy and AE management in patients with Child-Pugh class B or ALBI grade 2/3.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Estudios de Cohortes , Estudios Retrospectivos , Neoplasias Hepáticas/tratamiento farmacológico , Albúminas , Bilirrubina
15.
Ann Surg Oncol ; 30(5): 2782-2790, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36178565

RESUMEN

BACKGROUND: Combined treatment with tyrosine kinase inhibitors (TKI) plus anti-PD-1 antibodies showed high anti-tumor efficacy and made conversion resection possible for patients with unresectable hepatocellular carcinoma (HCC). However, long-term survival has not been reported. METHODS: A cohort of consecutive patients who received combined TKI/anti-PD-1 antibodies as first-line treatment for initially unresectable HCC at the authors' hospital between August 2018 and September 2020 was eligible for this study. Patients who were responding to systemic therapy and met the criteria for hepatectomy underwent liver resection with curative intention. The study also investigated the association of clinical factors with successful conversion resection and postoperative recurrence. RESULTS: The study enrolled 101 patients including 24 patients (23.8 %) who underwent R0 resection a median of 3.9 months (interquartile range: 2.5-5.9 months) after initiation of systemic therapy. Patients with an Eastern cooperative oncology group performance status of 0, fewer intrahepatic tumors, or a radiographic response to systemic therapy were more likely to be able to receive curative resection. After a median follow-up period of 21.5 months, hepatectomy was independently associated with a favorable overall survival (hazard ratio [HR], 0.050; 95 % confidence interval [CI], 0.007-0.365; P = 0.003). For the 24 patients who underwent surgery, the 12-month recurrence-free survival and overall survival rates were respectively 75% and 95.8%. Achieving a pathologic complete response (n = 10) to systemic therapy was associated with a favorable recurrence-free survival after resection, with a trend toward significance (HR, 0.345; 95% CI, 0.067-1.785; P = 0.187). CONCLUSIONS: Selected patients with initially unresectable HCC can undergo hepatectomy after systemic therapy with combined TKI/anti-PD-1 antibodies. In this study, conversion resection was associated with a favorable prognosis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/cirugía , Hepatectomía , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/cirugía , Pronóstico
16.
Front Immunol ; 13: 1016736, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505445

RESUMEN

Background: Conversion therapy is feasible in patients with oncologically unresectable hepatocellular carcinoma (HCC). However, it is challenging to prospectively identify patients who are more likely to achieve successful conversion before initiating systemic therapy, either alone or combined with locoregional therapy. Methods: Criteria for identifying potentially resectable patients with initially oncologically unresectable HCC before treatment with lenvatinib plus an anti-PD-1 antibody were proposed based on real-world evidence. Multivariate Firth logistic regression was used to validate the proposed criteria in a retrospective cohort of consecutive patients with advanced HCC, who received combination therapy with lenvatinib plus an anti-PD-1 antibody between September 2018 and September 2021. Results: The proposed criteria were as follows: (1) Eastern Cooperative Oncology Group performance status of 0 or 1; (2) Child-Pugh class A; (3) intrahepatic tumors confined to one lobe (left, right, or middle lobe), or present in one lobe alongside a single tumor with diameter ≤5 cm or up to three tumors each with diameter ≤3 cm in the remaining lobes, with R0 resection achievable by hemihepatectomy, alone or combined with locoregional therapy to the remaining lobes during surgery; and (4) no portal vein tumor thrombus involving the contralateral liver lobe or reaching the superior mesenteric vein, no hepatic vein tumor thrombus involving more than two major hepatic vein branches on the tumor side, and no tumor thrombus of the inferior vena cava reaching the atrium. Firth logistic regression confirmed the criteria were an independent predictor of surgery following conversion therapy with lenvatinib plus an anti-PD-1 antibody. Conclusions: This study proposed and validated criteria for identifying patients with initially oncologically unresectable HCC who are potentially resectable when treated with combination therapy with lenvatinib plus an anti-PD-1 antibody. The proposed criteria could help standardize conversion therapy studies in advanced HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Estudios Retrospectivos , Neoplasias Hepáticas/tratamiento farmacológico , Compuestos de Fenilurea/uso terapéutico
18.
Redox Biol ; 56: 102458, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36116159

RESUMEN

Guanosine triphosphate binding protein 4 (GTPBP4) is a key regulator of cell cycle progression and MAPK activation. However, how its biological properties intersect with cellular metabolism in hepatocellular carcinoma (HCC) development remains poorly unexplained. Here, high GTPBP4 expression is found to be significantly associated with worse clinical outcomes in patients with HCC. Moreover, GTPBP4 upregulation is paralleled by DNA promoter hypomethylation and regulated by DNMT3A, a DNA methyltransferase. Additionally, both gain- and loss-of-function studies demonstrate that GTPBP4 promotes HCC growth and metastasis in vitro and in vivo. Mechanically, GTPBP4 can induce dimeric pyruvate kinase M2 (PKM2) formation through protein sumoylation modification to promote aerobic glycolysis in HCC. Notably, active GTPBP4 facilitates SUMO1 protein activation by UBA2, and acts as a linker bridging activated SUMO1 protein and PKM2 protein to induce PKM2 sumoylation. Furthermore, SUMO-modified PKM2 relocates from the cytoplasm to the nucleus may also could contribute to HCC progression through activating epithelial-mesenchymal transition (EMT) and STAT3 signaling pathway. Shikonin, a PKM2-specific inhibitor, can attenuate PKM2 dependent HCC glycolytic reprogramming, growth and metastasis promoted by GTPBP4, which offers a promising therapeutic candidate for HCC patients. Our findings indicate that GTPBP4-PKM2 regulatory axis plays a vital role in promoting HCC proliferation as well as metastasis by aerobic glycolysis and offer a promising therapeutic target for HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Proteínas de Unión al GTP , Neoplasias Hepáticas , Proteínas Nucleares , Carcinoma Hepatocelular/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , ADN/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Glucólisis , Humanos , Neoplasias Hepáticas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo
19.
J Exp Clin Cancer Res ; 41(1): 253, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986343

RESUMEN

BACKGROUND: Tumor-associated macrophages (TAMs), which form a large part of the tumor microenvironment, are normally regulated by metabolic reprogramming. However, the potential mechanisms of the immune-metabolism interaction between hepatocellular carcinoma (HCC) cells and TAMs remain unclear. METHODS: The candidate long non-coding RNAs (lncRNAs) were screened by Smart-seq based scRNA-seq method and then validated by qPCR. Immunostaining analysis was done to examine the levels of markers for TAMs and glycolysis. Exosomes from primary TAMs of human HCC tissues were isolated by centrifugation, and their internalization with lncRNAs was confirmed by immunofluorescence. The underlying mechanism of TAMs-derived exosomal lncRNA to HCC was confirmed by luciferase reporter assay and RNA immunoprecipitation. Metabolism regulation was evaluated through glucose consumption, lactate productions and extracellular acidification rates (ECARs). Mouse xenograft models were used to elucidate the in vivo effect of candidate lncRNAs on tumor growth. RESULTS: TAMs augment the aerobic glycolysis in HCC cells and their proliferation by the extracellular exosome transmission of a myeloid-derived lncRNA, M2 macrophage polarization associated lncRNA (lncMMPA). Mechanistically, lncMMPA not only could polarize M2 macrophage, but also could act as an microRNA sponge to interact with miR-548 s and increase the mRNA level of ALDH1A3, then further promote glucose metabolism and cell proliferation in HCC. Moreover, lncMMPA increased HCC cell multiplication through interacting with miR-548 s in vivo. Clinically, lncMMPA expression associates with glycolysis in TAMs and reduced survival of HCC patients. CONCLUSION: LncMMPA plays an important role in regulating HCC malignancy and metabolic reprogramming of miR-548 s/ALDH1A3 pathway.


Asunto(s)
Carcinoma Hepatocelular , Exosomas , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Animales , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Glucólisis , Humanos , Neoplasias Hepáticas/patología , Ratones , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Microambiente Tumoral , Macrófagos Asociados a Tumores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA