Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
BMC Plant Biol ; 24(1): 331, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664619

RESUMEN

BACKGROUND: Jasmine (Jasminum), renowned for its ornamental value and captivating fragrance, has given rise to numerous species and accessions. However, limited knowledge exists regarding the evolutionary relationships among various Jasminum species. RESULTS: In the present study, we sequenced seven distinct Jasminum species, resulting in the assembly of twelve high-quality complete chloroplast (cp) genomes. Our findings revealed that the size of the 12 cp genomes ranged from 159 to 165 kb and encoded 134-135 genes, including 86-88 protein-coding genes, 38-40 tRNA genes, and 8 rRNA genes. J. nudiflorum exhibited a larger genome size compared to other species, mainly attributed to the elevated number of forward repeats (FRs). Despite the typically conservative nature of chloroplasts, variations in the presence or absence of accD have been observed within J. sambac. The calculation of nucleotide diversity (Pi) values for 19 cp genomes indicated that potential mutation hotspots were more likely to be located in LSC regions than in other regions, particularly in genes ycf2, rbcL, atpE, ndhK, and ndhC (Pi > 0.2). Ka/Ks values revealed strong selection pressure on the genes rps2, atpA, rpoA, rpoC1, and rpl33 when comparing J. sambac with the three most closely related species (J. auriculatum, J. multiflorum, and J. dichotomum). Additionally, SNP identification, along with the results of Structure, PCA, and phylogenetic tree analyses, divided the Jasminum cp genomes into six groups. Notably, J. polyanthum showed gene flow signals from both the G5 group (J. nudiflorum) and the G3 group (J. tortuosum and J. fluminense). Phylogenetic tree analysis reflected that most species from the same genus clustered together with robust support in Oleaceae, strongly supporting the monophyletic nature of cp genomes within the genus Jasminum. CONCLUSION: Overall, this study provides comprehensive insights into the genomic composition, variation, and phylogenetic relationships among various Jasminum species. These findings enhance our understanding of the genetic diversity and evolutionary history of Jasminum.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma del Cloroplasto , Jasminum , Filogenia , Jasminum/genética , Oleaceae/genética
2.
Front Plant Sci ; 14: 1069055, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844068

RESUMEN

Mangrove forests inhabit tropical or subtropical intertidal zones and have remarkable abilities in coastline protection. Kandelia obovata is considered the most cold-tolerant mangrove species and has been widely transplanted to the north subtropical zone of China for ecological restoration. However, the physiological and molecular mechanisms of K. obovata under colder climate was still unclear. Here, we manipulated the typical climate of cold waves in the north subtropical zone with cycles of cold/recovery and analyzed the physiological and transcriptomic responses of seedlings. We found that both physiological traits and gene expression profiles differed between the first and later cold waves, indicating K. obovata seedlings were acclimated by the first cold experience and prepared for latter cold waves. 1,135 cold acclimation-related genes (CARGs) were revealed, related to calcium signaling, cell wall modification, and post-translational modifications of ubiquitination pathways. We identified the roles of CBFs and CBF-independent transcription factors (ZATs and CZF1s) in regulating the expression of CARGs, suggesting both CBF-dependent and CBF- independent pathways functioned in the cold acclimation of K. obovata. Finally, we proposed a molecular mechanism of K. obovata cold acclimation with several key CARGs and transcriptional factors involved. Our experiments reveal strategies of K. obovata coping with cold environments and provide prospects for mangrove rehabilitation and management.

3.
Mitochondrial DNA B Resour ; 8(12): 1440-1444, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38173916

RESUMEN

Kandelia obovata Sheue, H.Y.Liu & J.W.H.Yong is one of the most cold-resistant true mangrove species, and it is widely distributed from the South China Sea to southern Japan. In the current study, the complete mitochondrial genome sequence of K. obovata was assembled using Illumina reads. It is the first mitochondrial genome of the Kandelia genus within the family Rhizophoraceae to be sequenced. The mitochondrial genome size is 312,146 bp with a total of 49 predicted genes, including 29 protein-coding genes, 17 transfer RNA genes, and 3 ribosomal RNA genes. The overall GC content of the genome is 41.87%. A phylogenetic tree constructed using nine complete mitochondrial genomes revealed that K. obovata is more closely related to Bruguiera species. This study enriches the plastid genome of Kandelia, furnishing valuable genetic insights for the investigation of evolutionary and population genetics in Kandelia and other mangrove species.

4.
Tree Physiol ; 42(11): 2353-2368, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-35708522

RESUMEN

The process of plastids developing into chloroplasts is critical for plants to survive. However, this process in woody plants is less understood. Kandelia obovata Sheue, Liu & Yong is a viviparous mangrove species; the seeds germinate on the maternal tree, and the hypocotyls continue to develop into mature propagules. We identified rare albino propagules through field observation among normal green and brown ones. Toward unveiling the propagule plastid development mechanism, albino propagule leaves only have etioplasts, low photosynthesis rates, and drastically reduced chlorophyll a/b and carotenoid contents, but with increased superoxide dismutase activities. To identify candidate genes controlling propagule plastid development, a genome-wide association study (GWAS) was performed between the albino and green propagules. Twenty-five significant single nucleotide polymorphisms (SNPs) were associated with albino propagule plastid development, the most significant SNPs being located on chromosomes 1 and 5. Significant differentially expressed genes were identified in porphyrin and chlorophyll metabolisms, carotenoid and flavonoid biosynthesis by combining transcriptome and GWAS data. In particular, KoDELLAs, encoding a transcription factor and KoCHS, encoding chalcone synthase, may be essential to regulate the albino propagules plastid development through weakened chlorophyll and flavonoid biosynthesis pathways while promoting chlorophyll degradation. Our results provide insights into genetic mechanisms regulating propagule plastid development in woody plants.


Asunto(s)
Rhizophoraceae , Rhizophoraceae/metabolismo , Estudio de Asociación del Genoma Completo , Clorofila A , Clorofila/metabolismo , Plastidios/genética , Plastidios/metabolismo , Carotenoides , Flavonoides
5.
Plant Cell Environ ; 45(6): 1698-1718, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35141923

RESUMEN

Aquaporins (AQPs) play important roles in plant growth, development and tolerance to environmental stresses. To understand the role of AQPs in the mangrove plant Kandelia obovata, which has the ability to acquire water from seawater, we identified 34 AQPs in the K. obovata genome and analysed their structural features. Phylogenetic analysis revealed that KoAQPs are homologous to AQPs of Populus and Arabidopsis, which are evolutionarily conserved. The key amino acid residues were used to assess water-transport ability. Analysis of cis-acting elements in the promoters indicated that KoAQPs may be stress- and hormone-responsive. Subcellular localization of KoAQPs in yeast showed most KoAQPs function in the membrane system. That transgenic yeast with increased cell volume showed that some KoAQPs have significant water-transport activity, and the substrate sensitivity assay indicates that some KoAQPs can transport H2 O2 . The transcriptome data were used to analyze the expression patterns of KoAQPs in different tissues and developing fruits of K. obovata. In addition, real-time quantitative PCR analyses combined transcriptome data showed that KoAQPs have complex responses to environmental factors, including salinity, flooding and cold. Collectively, the transport of water and solutes by KoAQPs contributed to the adaptation of K. obovata to the coastal intertidal environment.


Asunto(s)
Acuaporinas , Rhizophoraceae , Acuaporinas/genética , Acuaporinas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizophoraceae/metabolismo , Saccharomyces cerevisiae/metabolismo , Agua/metabolismo
6.
Front Plant Sci ; 13: 1075353, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684775

RESUMEN

In 2003, Kandelia obovata was identified as a new mangrove species differentiated from Kandelia candel. However, little is known about their chloroplast (cp) genome differences and their possible ecological significance. In this study, 25 whole cp genomes, with seven samples of K. candel from Malaysia, Thailand, and Bangladesh and 18 samples of K. obovata from China, were sequenced for comparison. The cp genomes of both species encoded 128 genes, namely 83 protein-coding genes, 37 tRNA genes, and eight rRNA genes, but the cp genome size of K. obovata was ~2 kb larger than that of K. candle due to the presence of more and longer repeat sequences. Of these, tandem repeats and simple sequence repeats exhibited great differences. Principal component analysis based on indels, and phylogenetic tree analyses constructed with homologous protein genes from the single-copy genes, as well as 38 homologous pair genes among 13 mangrove species, gave strong support to the separation of the two species within the Kandelia genus. Homologous genes ndhD and atpA showed intraspecific consistency and interspecific differences. Molecular dynamics simulations of their corresponding proteins, NAD(P)H dehydrogenase chain 4 (NDH-D) and ATP synthase subunit alpha (ATP-A), predicted them to be significantly different in the functions of photosynthetic electron transport and ATP generation in the two species. These results suggest that the energy requirement was a pivotal factor in their adaptation to differential environments geographically separated by the South China Sea. Our results also provide clues for future research on their physiological and molecular adaptation mechanisms to light and temperature.

7.
Antibiotics (Basel) ; 10(10)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34680780

RESUMEN

Receptor-interacting protein 3 (RIP3) has been demonstrated to be a key regulator not only in cell death pathways including apoptosis and necroptosis but also in inflammation and host immune responses. In this study, a RIP3 ortholog named Lc-RIP3 is identified in large yellow croaker (Larimichthys crocea). The open reading frame (ORF) of Lc-RIP3 is 1524 bp long and encodes a protein of 507 amino acids (aa). The deduced Lc-RIP3 protein has an N-terminal kinase domain and a C-terminal RHIM domain, and the genome organization of Lc-RIP3 is conserved in teleosts with 12 exons and 11 introns but is different from that in mammals, which comprises 10 exons and 9 introns. Confocal microscopy revealed that Lc-RIP3 is a cytosolic protein. The expression analysis at the mRNA level indicated that Lc-RIP3 is ubiquitously distributed in various tissues/organs, and could be up-regulated under poly I:C, LPS, PGN, and Pseudomonas plecoglossicida stimulation in vivo. Notably, Lc-RIP3 could induce NF-κB but not IRF3 activation. In addition, Lc-RIP3 co-expression with Lc-TRIF, Lc-MAVS, or Lc-IRF3 significantly abolishes the activation of NF-κB but enhances the induction of IRF3 activity. Moreover, NF-κB activity could be up-regulated when Lc-RIP3 is co-expressed with Lc-RIP1 or Lc-IRF7. These results collectively indicate that Lc-RIP3 acts as an important regulator in host innate immune signaling in teleosts.

8.
Aquat Toxicol ; 240: 105970, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34562875

RESUMEN

Increasing salinity levels in marine and estuarine ecosystems greatly influence developmental, physiological and molecular activities of inhabiting fauna. Marine medaka (Oryzias melastigma), a euryhaline research model, has extraordinary abilities to survive in a wide range of aquatic salinity. To elucidate how marine medaka copes with salinity differences, the responses of Oryzias melastigma after being transferred to different salt concentrations [0 practical salinity units (psu), 15 psu, 30 psu (control), 45 psu] were studied at developmental, histochemical and transcriptome levels in the gill and liver tissues. A greater number of gills differentially expressed genes (DEG) under 0 psu (609) than 15 psu (157) and 45 psu (312), indicating transcriptomic adjustments in gills were more sensitive to the extreme hypotonic environment. A greater number of livers DEGs were observed in 45 psu (1,664) than 0 psu (87) and L15 psu (512), suggesting that liver was more susceptible to hypertonic environment. Further functional analyses of DEGs showed that gills have a more immediate response, mainly in adjusting ion balance, immune and signal transduction. In contrast, DEGs in livers were involved in protein synthesis and processing. We also identified common DEGs in both gill and liver and found they were mostly involved in osmotic regulation of amino sugar and nucleotide sugar metabolism and steroid biosynthesis. Additionally, salinity stresses showed no significant effects on most developmental and histochemical parameters except increased heartbeat with increasing salinity and decreased glycogen after transferred from stable conditions (30 psu) to other salinity environments. These findings suggested that salinity-stress induced changes in gene expressions could reduce the effects on developmental and histochemical parameters. Overall, this study provides a useful resource for understanding the molecular mechanisms of fish responses to salinity stresses.


Asunto(s)
Oryzias , Animales , Ecosistema , Perfilación de la Expresión Génica , Branquias , Hígado , Oryzias/genética , RNA-Seq , Salinidad , Transcriptoma
9.
BMC Plant Biol ; 21(1): 341, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34281510

RESUMEN

BACKGROUND: Restoration through planting is the dominant strategy to conserve mangrove ecosystems. However, many of the plantations fail to survive. Site and seeding selection matters for planting. The process of afforestation, where individuals were planted in a novel environment, is essentially human-controlled transplanting events. Trying to deepen and expand the understanding of the effects of transplanting on plants, we have performed a seven-year-long reciprocal transplant experiment on Kandelia obovata along a latitudinal gradient. RESULTS: Combined phenotypic analyses and next-generation sequencing, we found phenotypic discrepancies among individuals from different populations in the common garden and genetic differentiation among populations. The central population with abundant genetic diversity and high phenotypic plasticity had a wide plantable range. But its biomass was reduced after being transferred to other latitudes. The suppressed expression of lignin biosynthesis genes revealed by RNA-seq was responsible for the biomass reduction. Moreover, using whole-genome bisulfite sequencing, we observed modification of DNA methylation in MADS-box genes that involved in the regulation of flowering time, which might contribute to the adaptation to new environments. CONCLUSIONS: Taking advantage of classical ecological experiments as well as multi-omics analyses, our work observed morphology differences and genetic differentiation among different populations of K. obovata, offering scientific advice for the development of restoration strategy with long-term efficacy, also explored phenotypic, transcript, and epigenetic responses of plants to transplanting events between latitudes.


Asunto(s)
Rhizophoraceae/crecimiento & desarrollo , Rhizophoraceae/genética , Biomasa , Conservación de los Recursos Naturales , Metilación de ADN , ADN de Plantas , Ecosistema , Variación Genética , Genética de Población , Lignanos/biosíntesis , Fenotipo , Filogeografía , RNA-Seq
10.
RNA Biol ; 18(12): 2594-2604, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34036876

RESUMEN

Alternative polyadenylation (APA) is a widespread post-transcriptional modification method that changes the 3' ends of transcripts by altering poly(A) site usage. However, the longitudinal transcriptomic 3' end profile and its mechanism of action are poorly understood. We applied diurnal time-course poly(A) tag sequencing (PAT-seq) for Arabidopsis and identified 3284 genes that generated both rhythmic and arrhythmic transcripts. These two classes of transcripts appear to exhibit dramatic differences in expression and translation activisty. The asynchronized transcripts derived by APA are embedded with different poly(A) signals, especially for rhythmic transcripts, which contain higher AAUAAA and UGUA signal proportions. The Pol II occupancy maximum is reached upstream of rhythmic poly(A) sites, while it is present directly at arrhythmic poly(A) sites. Integrating H3K9ac and H3K4me3 time-course data analyses revealed that transcriptional activation of histone markers may be involved in the differentiation of rhythmic and arrhythmic APA transcripts. These results implicate an interplay between histone modification and RNA 3'-end processing, shedding light on the mechanism of transcription rhythm and alternative polyadenylation.


Asunto(s)
Arabidopsis/genética , Poliadenilación , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN de Planta/genética , Transcripción Genética , Transcriptoma
11.
Sci Total Environ ; 785: 147298, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33940401

RESUMEN

Wetting-drying cycles typically result in a wide range of soil moistures and redox potentials (Eh) that significantly affect the soil microbial community. Although numerous studies have addressed the effects of soil moisture on soil microbial community structure and composition, the response of active microbes to the fluctuation in soil Eh is still largely unknown; this is especially true for the ecological roles of abundant and rare taxa. To explore the dynamics of active and total microbial communities in response to wetting-drying cycles, we conducted a microcosm experiment based on three wetting-drying cycles and 16S rRNA transcript (active) and 16S rRNA gene (total) amplicon sequencing. We found that both active and total microbial communities during three wetting-drying cycles were clustered according to the number of wetting-drying cycles (temporal factor) rather than soil moisture or Eh. Dynamics of the active microbial community, however, were redox dependent during the first wetting-drying cycle. In addition, rare taxa in the active microbial community exhibited more obvious differences than abundant ones during three wetting-drying cycles. Species turnover of abundant and rare taxa of total and active microbes, rather than species richness, explained the highest percentage of community variation. Rare taxa exhibited the most marked temporal turnover during three wetting-drying cycles. Members of Rhodospirillaceae were the major contributor to the resilience of abundant taxa of active microbes during the first wetting-drying cycle. Overall, these findings expand our current understanding of underlying assembly mechanisms of soil microbial communities responding to wetting-drying cycles.


Asunto(s)
Microbiota , Suelo , Desecación , ARN Ribosómico 16S , Microbiología del Suelo
12.
Environ Pollut ; 287: 117339, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34000668

RESUMEN

Microplastic (MP) pollution is widespread in various ecosystems and is colonized by microbes that form biofilms with compositions and functions. However, compared with aquatic environments, the soil environment has been poorly studied in terms of the taxonomic composition of microbial communities and the factors influencing the community structure of microbes in the plastisphere. In the present study, a microcosm experiment was conducted to investigate the plastisphere bacterial communities of MP (polyvinyl chloride, PVC) in soils with different pH (4.62, 6.5, and 7.46) and arsenic (As) contents (13 and 74 mg kg-1). Bacterial communities in the plastisphere were dominated by Proteobacteria and Firmicutes, with distinct compositions and structures compared with soil bacterial communities. Soil pH and As content significantly affected the plastisphere bacterial communities. Constrained analysis of principal coordinates and a structural equation model demonstrated that soil pH had a stronger influence on the dissimilarity and diversity of bacterial communities than did soil As content. Soil pH affected As speciation in soil and on MP. The concentration of dimethylarsinic acid (DMA) was significantly higher on MP than that in soil, indicating that As methylation occurred on MP. These results suggest that environmental fluctuations govern plastisphere bacterial communities with cascading effects on biogeochemical cycling of As in the soil ecosystems.


Asunto(s)
Arsénico , Microbiota , Concentración de Iones de Hidrógeno , Plásticos , Suelo , Microbiología del Suelo
13.
Biomolecules ; 11(2)2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499049

RESUMEN

Hexavalent chromium [Cr(VI)] pollution is one of most serious heavy metal pollutants in the coastal area and posed serious threats to marine organisms and human beings. Many studies have been conducted on its toxicological effects on living organisms from morphological to physiological aspects. However, there are few studies about the transgenerational toxicological of Cr(VI). In this study, we exposed adult marine medaka fishes with Cr(VI) and their offspring with Cr(VI) to examine transgenerational effects of Cr(VI). We found that there were mechanisms such as changing reproduction modes in males to compensate for impacts on the reproduction. There were differences and similarities between the parental effect and the environmental effect, with the former one causing more serious adverse effects on the offspring of Cr(VI)-exposed fish. It was noteworthy that there was an interaction between the parental and offspring treatment which leads to the attenuation of the parental effects on offspring when the offspring also underwent the same treatment. In addition, physiological adaptation has also been observed in fish to improve their fitness. Overall, effects of Cr(VI) on fish and their offspring were studied to pave a way to study the of mechanisms of adaptation.


Asunto(s)
Cromo/química , Fertilización/efectos de los fármacos , Oryzias/fisiología , Reproducción/efectos de los fármacos , Adaptación Fisiológica , Animales , ADN/química , Femenino , Calor , Masculino , Teratógenos , Contaminantes Químicos del Agua
14.
BMC Genomics ; 21(1): 640, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32938378

RESUMEN

BACKGROUND: Marine medaka (Oryzias melastigma) is considered as an important ecotoxicological indicator to study the biochemical, physiological and molecular responses of marine organisms towards increasing amount of pollutants in marine and estuarine waters. RESULTS: In this study, we reported a high-quality and accurate de novo genome assembly of marine medaka through the integration of single-molecule sequencing, Illumina paired-end sequencing, and 10X Genomics linked-reads. The 844.17 Mb assembly is estimated to cover more than 98% of the genome and is more continuous with fewer gaps and errors than the previous genome assembly. Comparison of O. melastigma with closely related species showed significant expansion of gene families associated with DNA repair and ATP-binding cassette (ABC) transporter pathways. We identified 274 genes that appear to be under significant positive selection and are involved in DNA repair, cellular transportation processes, conservation and stability of the genome. The positive selection of genes and the considerable expansion in gene numbers, especially related to stimulus responses provide strong supports for adaptations of O. melastigma under varying environmental stresses. CONCLUSIONS: The highly contiguous marine medaka genome and comparative genomic analyses will increase our understanding of the underlying mechanisms related to its extraordinary adaptation capability, leading towards acceleration in the ongoing and future investigations in marine ecotoxicology.


Asunto(s)
Genoma , Oryzias/genética , Animales , Mapeo Contig , Evolución Molecular , Familia de Multigenes , Selección Genética , Alineación de Secuencia , Secuenciación Completa del Genoma
15.
Artículo en Inglés | MEDLINE | ID: mdl-32151776

RESUMEN

Chromium is toxic to marine animals and can cause damage to many of their organs, including the liver. To test the toxicity of chromium on marine organisms, we exposed the liver of the marine medaka (Oryzias melastigma) with hexavalent chromium [Cr(VI)]. Our results show that Cr enrichment in the liver demonstrates a positive correlation to the exposure concentration. With the increase of Cr(VI) concentration, pathological changes including nuclear migration, cell vacuolization, blurred intercellular gap, nuclear condensation, become noticeable. To further study changes in gene expression in the liver after Cr(VI) exposure, we used RNA-seq to compare expression profiles before and after Cr(VI) exposure. After acute Cr(VI) exposure (2.61 mg/l) for 96 h, 5862 transcripts significantly changed. It is the first time that the PPAR pathway was found to respond sensitively to Cr(VI) exposure in fish. Finally, combined with other published study, we found that there may be some difference between Cr(VI) toxicity in seawater fish and freshwater fish, due to degree of oxidative stress, distribution patterns and detailed Cr(VI) toxicological mechanisms. Not only does our study explore the mechanisms of Cr(VI) toxicity on the livers of marine medaka, it also points out different Cr(VI) toxicity levels and potential mechanisms between seawater fish and freshwater fish.


Asunto(s)
Cromo/toxicidad , Hígado/efectos de los fármacos , Oryzias , Contaminantes Químicos del Agua/toxicidad , Animales , Estrés Oxidativo , RNA-Seq , Transcriptoma
16.
Plant J ; 99(1): 67-80, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30844106

RESUMEN

The post-transcriptional regulation involved in the responses of diatoms to silicon is poorly understood. Using a poly(A)-tag sequencing (PAT-seq) technique that interrogates only the junctions of 3'-untranslated region (UTR) and the poly(A) tails at the transcriptome level, a comprehensive comparison of alternative polyadenylation (APA) was performed to understand the role of post-transcriptional regulation in various silicon-related cellular responses for the marine diatom Thalassiosira pseudonana. In total, 23 701 poly(A) clusters and 6894 APA genes, treated with silicon starvation and replenishment, were identified at nine time points. Significant APA was found in numerous genes (e.g. five cingulin genes) closely associated with the silicon-starvation response, girdle bands and valve synthesis, suggesting that many genes participated in the responses to silicon availability and biosilica formation through changes in transcript isoforms. The poly(A) site usage profiles were distinct during various stages of silicon biomineralization responses. Moreover, a correlation between APA and expression levels of APA switching genes was also discovered. This is an interesting study that presents a genome-wide profile of transcript ends in diatoms, which is distinct from that of higher plants, animals and other microalgae. This work provides an important resource to understand a different aspect of cell-wall synthesis.


Asunto(s)
Diatomeas/metabolismo , Silicio/metabolismo , Diatomeas/genética , Genoma de Planta/genética , Poliadenilación
17.
Sci Rep ; 8(1): 770, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29335506

RESUMEN

Mangrove plants adapt to coastal tidal mudflats with specially evolved viviparity seed development. However, very little is known about the genetic and molecular mechanisms of mangrove viviparity. Here, we tested a hypothesis that plant hormone abscisic acid (ABA) plays a significant role in precocious germination of viviparous Kandelia obovata seeds by exogenous applications. Through transcriptome analysis of ABA treated seeds, it was found that ABA repressed mangrove fruit growth and development, and there were thousands of genes differentially expressed. As a result, dynamics of the pathways were dramatically altered. In particular, "Plant hormone signal transduction" and "MAPK signaling pathway" were represented significantly. Among differentially expressed genes, some key genes of ABA signal transduction were induced, while ABA biosynthesis genes were repressed. Take ABI1 and ABI2, key negative regulators in ABA signal pathway, as examples, homologous alignment and a phylogenetic tree in various species showed that ABI1 and ABI2 are highly conserved among various species. The functional similarity of these genes was confirmed by transgenic work in Arabidopsis. Taken together, ABA inhibited mangrove viviparity, but mangroves developed a mechanism to prevent accidently increase of ABA in the harsh environment for maintaining viviparous reproductive strategy.


Asunto(s)
Ácido Abscísico/metabolismo , Perfilación de la Expresión Génica , Reguladores del Crecimiento de las Plantas/metabolismo , Rhizophoraceae/efectos de los fármacos , Rhizophoraceae/embriología , Regulación de la Expresión Génica de las Plantas , Germinación/efectos de los fármacos , Rhizophoraceae/genética , Semillas/efectos de los fármacos , Semillas/genética , Transducción de Señal
18.
Aquat Toxicol ; 192: 274-283, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28992598

RESUMEN

Antidepressants are among the most commonly detected pharmaceuticals in aqueous systems, and, as emerging organic pollutants, may exert negative effects on non-target aquatic organisms. Previously, it has been revealed that antidepressant exposure significantly inhibits the growth and development of fish during their early developmental stages. Thus, in the present study, we aimed to identify and compare the underlying mechanisms of action of different antidepressants at the transcriptional level using zebrafish (Danio rerio) embryos. Through high-throughput RNA sequencing (RNA-Seq) data analysis, 32, 34, and 130 differentially expressed genes (DEGs) were obtained from zebrafish larvae after 120h of embryonic exposure to sublethal concentrations of amitriptyline, fluoxetine, and mianserin, respectively. The expression profiles of the identified DEGs showed similar trends in response to the three antidepressant treatments, suggesting consistent toxic effects of low concentrations of these three drugs on the regulation of gene expression in fish. Several metabolic and signaling pathways, including glycolysis/gluconeogenesis and the insulin pathway, were affected in the exposed fish larvae. The expression profiles of selected DEGs were then verified by the qRT-PCR method, which indicated significant positive correlations with the RNA-Seq results. Next, we determined the concentration-dependent expression patterns of 6 selected DEGs in fish larvae exposed to three antidepressants at a series of environmentally relevant concentrations. The results revealed a significant concentration-dependent reduction in the levels of dual-specificity phosphatase 5 (dusp5) mRNA, as well as a non-concentration-dependent gene expression inhibition of prostaglandin D2 synthase b (ptgdsb); the circadian rhythm-related genes, i.e. those encoding nuclear receptor subfamily 1, group D, member 1 (nr1d1) and period 2 (per2); and genes encoding early growth response factors (egr1 and egr4), in the antidepressant-treated fish larvae. In summary, to our knowledge, our findings demonstrate, for the first time, that the three different categories of antidepressants have common effects on the gene expression involved in multiple biological processes and signaling pathways during the early development of fish and thus provide information for characterizing the adverse outcome pathways and on the ecological risk assessment of these pharmaceutical pollutants in the aquatic environment.


Asunto(s)
Amitriptilina/toxicidad , Antidepresivos/toxicidad , Fluoxetina/toxicidad , Mianserina/toxicidad , Contaminantes Químicos del Agua/toxicidad , Amitriptilina/química , Animales , Antidepresivos/química , Fluoxetina/química , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Larva/efectos de los fármacos , Mianserina/química , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal/efectos de los fármacos , Contaminantes Químicos del Agua/química , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
19.
Plant J ; 91(5): 829-839, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28621907

RESUMEN

CPSF100 is a core component of the cleavage and polyadenylation specificity factor (CPSF) complex for 3'-end formation of mRNA, but it still has no clear functional assignment. CPSF100 was reported to play a role in RNA silencing and promote flowering in Arabidopsis. However, the molecular mechanisms underlying these phenomena are not fully understood. Our genetics analyses indicate that plants with a hypomorphic mutant of CPSF100 (esp5) show defects in embryogenesis, reduced seed production or altered root morphology. To unravel this puzzle, we employed a poly(A) tag sequencing protocol and uncovered a different poly(A) profile in esp5. This transcriptome-wide analysis revealed alternative polyadenylation of thousands of genes, most of which result in transcriptional read-through in protein-coding genes. AtCPSF100 also affects poly(A) signal recognition on the far-upstream elements; in particular it prefers less U-rich sequences. Importantly, AtCPSF100 was found to exert its functions through the change of poly(A) sites on genes encoding binding proteins, such as nucleotide-binding, RNA-binding and poly(U)-binding proteins. In addition, through its interaction with RNA Polymerase II C-terminal domain (CTD) and affecting the expression level of CTD phosphatase-like 3 (CPL3), AtCPSF100 is shown to potentially ensure transcriptional termination by dephosphorylation of Ser2 on the CTD. These data suggest a key role for CPSF100 in locating poly(A) sites and affecting transcription termination.


Asunto(s)
Arabidopsis/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Poli A/metabolismo , Transcripción Genética , Arabidopsis/fisiología , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Perfilación de la Expresión Génica , Poliadenilación/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...