Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 14: 1178724, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601071

RESUMEN

Leukopenia caused by radiation hinders the continuous treatment of cancers. Danggui Buxue Decoction (DBD) has been widely used in clinical owing to low toxicity and definite therapeutic effects to increase leukocytes. Meanwhile, icaritin (ICT) has also been proved to have the effect of boosting peripheral blood cells proliferation. However, there is no study to prove the efficacy of MDBD (Modified Danggui Buxue Decoction), a derivative herbal formula composed of DBD and ICT, in the treatment of radiation-induced leukopenia. In this study, we performed a model of 3.5 Gy whole-body radiation to induce leukopenia in mice. The results of pharmacodynamic studies demonstrated that MDBD could significantly increase the white blood cells in peripheral blood by improving the activity of bone marrow nuclear cells, reducing bone marrow damage, modulating spleen index, and regulating hematopoietic factors to alleviate leukopenia. We also analyzed the integrated results of metabolomics and transcriptomics and found that MDBD could relieve leukopenia and alleviate bone marrow damage by targeting steroid biosynthesis and IL-17 signaling pathway, in which the key genes are Jun, Cxcl2 and Egr1. Therefore, our study provides a basis for the effectiveness and compatibility in the combination of traditional Chinese medicine formula and small molecule drugs.

2.
Phytother Res ; 37(10): 4557-4571, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37427974

RESUMEN

Cryptotanshinone (CPT), a major biological active ingredient extracted from root of Salvia miltiorrhiza (Danshen), has shown several pharmacological activities. However, the effect of CPT on radiation-induced lung fibrosis (RILF) is unknown. In this study, we explored the protective effects of CPT on RILF from gut-lung axis angle, specifically focusing on the bile acid (BA)-gut microbiota axis. We found that CPT could inhibit the process of epithelial mesenchymal transformation (EMT) and suppress inflammation to reduce the deposition of extracellular matrix in lung fibrosis in mice induced by radiation. In addition, 16S rDNA gene sequencing and BAs-targeted metabolomics analysis demonstrated that CPT could improve the dysbiosis of gut microbiota and BA metabolites in RILF mice. CPT significantly enriched the proportion of the beneficial genera Enterorhabdus and Akkermansia, and depleted that of Erysipelatoclostridium, which were correlated with increased intestinal levels of several farnesoid X receptor (FXR) natural agonists, such as deoxycholic acid and lithocholic acid, activating the FXR pathway. Taken together, these results suggested that CPT can regulate radiation-induced disruption of gut microbiota and BAs metabolism of mice, and reduce the radiation-induced lung inflammation and fibrosis. Thus, CPT may be a promising drug candidate for treating RILF.

3.
Biomed Pharmacother ; 163: 114862, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37167729

RESUMEN

Chronic fatigue syndrome (CFS) is a debilitating disease with no symptomatic treatment. Astragalus polysaccharide (APS), a component derived from the traditional Chinese medicine A. membranaceus, has significant anti-fatigue activity. However, the mechanisms underlying the potential beneficial effects of APS on CFS remain poorly understood. A CFS model of 6-week-old C57BL/6 male mice was established using the multiple-factor method. These mice underwent examinations for behavior, oxidative stress and inflammatory indicators in brain and intestinal tissues, and ileum histomorphology. 16 S rDNA sequencing analysis indicated that APS regulated the abundance of gut microbiota and increased production of short chain fatty acids (SCFAs) and anti-inflammatory bacteria. In addition, APS reversed the abnormal expression of Nrf2, NF-κB, and their downstream factors in the brain-gut axis and alleviated the reduction in SCFAs in the cecal content caused by CFS. Further, APS modulated the changes in serum metabolic pathways induced by CFS. Finally, it was verified that butyrate exerted antioxidant and anti-inflammatory effects in neuronal cells. In conclusion, APS could increase the SCFAs content by regulating the gut microbiota, and SCFAs (especially butyrate) can further regulate the oxidative stress and inflammation in the brain, thus alleviating CFS. This study explored the efficacy and mechanism of APS for CFS from the perspective of gut-brain axis and provides a reference to further explore the efficacy of APS and the role of SCFAs in the central nervous system.


Asunto(s)
Síndrome de Fatiga Crónica , Microbioma Gastrointestinal , Masculino , Animales , Ratones , Síndrome de Fatiga Crónica/tratamiento farmacológico , Ratones Endogámicos C57BL , Antiinflamatorios/farmacología , Ácidos Grasos Volátiles/metabolismo , Butiratos/farmacología , Polisacáridos/farmacología , Polisacáridos/uso terapéutico
4.
Biomed Chromatogr ; 37(6): e5621, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36895149

RESUMEN

Cistanche tubulosa (CT), a well-known traditional Chinese medicine, has always been processed with rice wine for the treatment of kidney-yang deficiency syndrome (KYDS) since time immemorial. To explore the effect of processing on the efficacy and metabolites of CT in vivo, a comprehensive method using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was established for the analysis of the altered endogenous metabolites in response to the intervention of the raw and processed CT in KYDS model and the metabolites of the absorbed compounds in rats after gastric perfusion. It was shown that CT could improve KYDS, and the effect of the processed product was more significant. A total of 47 differential metabolites were identified in urine. Pathway analysis proved that purine metabolism; alanine, aspartate, and glutamate metabolism; and citrate cycle were the main pathways. Furthermore, 53 prototypes and 48 metabolites have been detected in rats. This was the first systematic research focus on the metabolites of raw and processed CT in vivo, which could provide a scientific basis for explaining the increasing efficiency of the processed CT. Moreover, it provides a valuable strategy for analyzing the chemical components and metabolites of other TCM prescriptions.


Asunto(s)
Cistanche , Medicamentos Herbarios Chinos , Ratas , Animales , Ratas Sprague-Dawley , Cistanche/metabolismo , Medicamentos Herbarios Chinos/química , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas , Cromatografía Liquida
5.
Metabolites ; 13(2)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36837823

RESUMEN

Ophiopogonis Radix, also known as "Maidong" (MD) in China, is frequently sulfur-fumigated (SF) in the pretreatment process of MD to improve the appearance and facilitate preservation. However, the process leads to changes in chemical composition, so it is essential to develop an approach to identify the chemical characteristics between nonfumigated and sulfur-fumigated products. This paper provided a practical method based on UPLC-QTOF-MS combined Global Natural Products Social Molecular Networking (GNPS) with multivariate statistical analysis for the characterization and discrimination of MD with different levels of sulfur fumigation, high concentration sulfur fumigation (HS), low concentration sulfur fumigation (LS) and without sulfur fumigation (WS). First, a number of 98 compounds were identified in those MD samples. Additionally, the results of Principal component analysis (PCA) and Orthogonal partial least-squares-discriminant analysis (OPLS-DA) demonstrated that there were significant chemical differences in the chemical composition of MD with different degrees of SF. Finally, fourteen and sixteen chemical markers were identified upon the comparison between HS and WS, LS and WS, respectively. Overall, these results can be able to discriminate MD with different levels of SF as well as establish a solid foundation for further quality control and pharmacological research.

6.
Nat Prod Bioprospect ; 13(1): 6, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36790599

RESUMEN

Euodiae Fructus, referred to as "Wuzhuyu" in Chinese, has been used as local and traditional herbal medicines in many regions, especially in China, Japan and Korea, for the treatment of gastrointestinal disorders, headache, emesis, aphtha, dermatophytosis, dysentery, etc. Substantial investigations into their chemical and pharmacological properties have been performed. Recently, interest in this plant has been focused on the different structural types of alkaloids like evodiamine, rutaecarpine, dehydroevodiamine and 1-methyl-2-undecyl-4(1H)-quinolone, which exhibit a wide range of pharmacological activities in preclinical models, such as anticancer, antibacterial, anti-inflammatory, anti-cardiovascular disease, etc. This review summarizes the up-to-date and comprehensive information concerning the botany, traditional uses, phytochemistry, pharmacology of Euodiae Fructus together with the toxicology and quality control, and discusses the possible direction and scope for future research on this plant.

8.
Org Biomol Chem ; 21(7): 1395-1398, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36688572

RESUMEN

Herein, we presented a simple approach for C-H oxidation in the C23 or/and C24 of ursane triterpenoids without any protection of a Δ12,13 double bond. As a result, from commercial ursolic acid (UA), six naturally occurring ursane triterpenoids were synthesized in overall yields of 3.4% to 36.8%, which implied the importance of this approach for the derivation of natural products and their application in biological activity.


Asunto(s)
Productos Biológicos , Triterpenos , Triterpenos/farmacología , Triterpenos/química , Triterpenos Pentacíclicos , Productos Biológicos/química
9.
Biol Pharm Bull ; 45(12): 1743-1753, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36130913

RESUMEN

Delavatine A (DA) is an unusual isoquinoline alkaloid with a novel skeleton isolated from Chinese folk medicine Incarvillea delavayi. Studies conducted in our lab have demonstrated that DA has potential anti-inflammatory activity in lipopolysaccharide (LPS)-treated BV-2 cells. DA, however, has not been studied for its protective effect on neuronal cells yet. Thus, to explore whether DA can protect neurons, oxygen and glucose deprivation/reperfusion (OGD/R)-injured PC12 cell and middle cerebral artery occlusion/reperfusion (MCAO/R) rat model were used to assess the protective efficacy of DA against OGD/R damaged PC12 cells and MCAO/R injured rats. Our results demonstrated that DA pretreatment (0.31-2.5 µM) dose-dependently increased cell survival and mitochondrial membrane potential (MMP), whereas it lowered the leakage of lactate dehydrogenase (LDH), intracellular cumulation of Ca2+, and overproduction of reactive oxygen species (ROS), and inhibited the apoptosis rate in OGD/R-injured PC12 cells. Western blot demonstrated that DA pretreatment lowered the expression of apoptotic proteins and repressed the activation of the mitogen-activated protein kinase kinase 7 (MKK7)/c-Jun N-terminal kinase (JNK) pathway. It was also found that the neuroprotective efficacy of DA was significantly reversed by co-treatment with the JNK agonist anisomycin, suggesting that DA reduced PC12 cell injury and apoptosis by suppressing the MKK7/JNK pathway. Furthermore, DA oral administration greatly alleviated the neurological dysfunction and reduced the infarct volume of MCAO/R rats. Taken together, DA could ameliorate OGD/R-caused PC12 cell injury and improve brain ischemia/reperfusion (I/R) damage in MCAO/R rats, and its neuroprotection might be attributed to suppressing the MKK7/JNK signaling pathway.


Asunto(s)
Fármacos Neuroprotectores , Daño por Reperfusión , Animales , Ratas , Células PC12 , Glucosa/metabolismo , Oxígeno/metabolismo , Sistema de Señalización de MAP Quinasas , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Daño por Reperfusión/metabolismo , Apoptosis , Reperfusión
10.
Metabolites ; 12(9)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36144234

RESUMEN

Euphorbiasteroid, a lathyrane-type diterpene from Euphorbiae semen (the seeds of Euphorbia lathyris L.), has been shown to have a variety of pharmacological effects such as anti-tumor and anti-obesity. This study aims to investigate the metabolic profiles of euphorbiasteroid in rats and rat liver microsomes (RLMs) and Cunninghamella elegans bio-110930 by integrating ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-Q/TOF-MS), UNIFI software, and NMR techniques. A total of 31 metabolites were identified in rats. Twelve metabolites (M1-M5, M8, M12-M13, M16, M24-M25, and M29) were matched to the metabolites obtained by RLMs incubation and the microbial transformation of C. elegans bio-110930 and their structures were exactly determined through analysis of NMR spectroscopic data. In addition, the metabolic pathways of euphorbiasteroid were then clarified, mainly including hydroxylation, hydrolysis, oxygenation, sulfonation, and glycosylation. Finally, three metabolites, M3 (20-hydroxyl euphorbiasteroid), M24 (epoxylathyrol) and M25 (15-deacetyl euphorbiasteroid), showed significant cytotoxicity against four human cell lines with IC50 values from 3.60 µM to 40.74 µM. This is the first systematic investigation into the in vivo metabolic pathways of euphorbiasteroid and the cytotoxicity of its metabolites, which will be beneficial for better predicting the metabolism profile of euphorbiasteroid in humans and understanding its possible toxic material basis.

11.
J Pharm Pharmacol ; 74(11): 1598-1608, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36106815

RESUMEN

Objectives Due to its high morbidity, high mortality, and high disability, stroke has been the first cause of death and the major cause of adult disability in China. Natural borneol has been widely utilized in Traditional Chinese Medicine to promote drug absorption. Formononetin is a natural isoflavonoid with potent neuroprotective activity but poor brain delivery. Methods This study aimed to screen the optimum proportion that natural borneol promotes formononetin entry into the brain, evaluate the anti-cerebral ischaemia efficacy of formononetin/natural borneol combination in middle cerebral artery occlusion/reperfusion model rats, and clarify the possible mechanism for natural borneol's promoting formononetin delivery in the brain. Key findings Our studies exhibited that natural borneol remarkably promoted formononetin entry into the brain when combined with formononetin in a 1 : 1 molar ratio and notably improved neuro-behavioural scores and reduced the infarct of middle cerebral artery occlusion/reperfusion model rats. This study further discovered that the enhanced anti-cerebral ischaemia effect resulted from natural borneol increasing the permeability of the blood-brain barrier to elevate formononetin concentration in the brain rather than the pharmacodynamic synergy or addition between formononetin and natural borneol. Conclusions The study provides a good strategy to screen drug combinations for the treatment of brain disease by combining natural borneol with other drugs.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Animales , Ratas , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Canfanos/farmacología , Isquemia Encefálica/tratamiento farmacológico , Encéfalo , Daño por Reperfusión/tratamiento farmacológico
12.
Front Pharmacol ; 13: 836724, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712699

RESUMEN

Our drug discovery model has identified two novel STAT3 SH2 domain inhibitors 323-1 and 323-2 (delavatine A stereoisomers) in a series of experiments. In silico computational modeling, drug affinity responsive target stability (DARTS), and fluorescence polarization (FP) assays altogether determined that 323-1 and 323-2 directly target the STAT3 SH2 domain and inhibited both phosphorylated and non-phosphorylated STAT3 dimerization. Computational docking predicted that compound 323s bind to three subpockets of the STAT3 SH2 domain. The 323s inhibition of STAT3 dimerization was more potent than the commercial STAT3 SH2 domain inhibitor S3I-201 in the co-immunoprecipitation assay, correlating with computational docking data. The fluorescence polarization assay further confirmed that the compound 323s target the STAT3 SH2 domain by competitively abrogating the interaction between STAT3 and the SH2-binding peptide GpYLPQTV. Compared with S3I-201, the 323 compounds exhibited stronger inhibition of STAT3 and reduced the level of IL-6-stimulated phosphorylation of STAT3 (Tyr705) in LNCaP cells over the phosphorylation of STAT1 (Tyr701) induced by IFN-É£ in PC3 cells or the phosphorylation of STAT1 (Ser727) in DU145 cells. Both compounds downregulated STAT3 target genes MCL1 and cyclin D1. Thus, the two compounds are promising lead compounds for the treatment of cancers with hyper-activated STAT3.

13.
Chem Biodivers ; 19(6): e202200268, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35531592

RESUMEN

Three new xanthone compounds, 1,3,5-trihydroxy-2-(2-hydroxy-3-methylbut-3-enyl)-4-(3-methylbut-2-enyl)xanthone (1), toxyloxanthone E (2), dehydrocycloguanandin B (3) along with 15 known xanthones (4-18) were isolated from the aerial parts of Calophyllum polyanthum Wall. ex Choisy. Their structures were fully characterised using spectroscopic data, as well as comparison with the previous literature data. All isolated compounds had inhibitory effects against CYP1A1, CYP1A2 and CYP1B1 enzymes at working concentration of 10 µM, 1 µM and 10 µM, respectively. Among them, compounds 10, 11, and 12 exhibited better CYP1A2 enzyme inhibitory effects than that of the positive control α-naphthoflavone, with 51.05 %, 56.82 % and 44.93 % inhibition, respectively.


Asunto(s)
Calophyllum , Xantonas , Calophyllum/química , Citocromo P-450 CYP1A2 , Familia 1 del Citocromo P450 , Estructura Molecular , Xantonas/química , Xantonas/farmacología
14.
Chem Biodivers ; 19(3): e202101013, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35229460

RESUMEN

Three new monoterpene alkaloids, delavatines C-E (1-3), along with five known ones (4-8), were separated from the whole plants of Incarvillea delavayi. All compounds were deduced by interpretation of comprehensive NMR spectral data and X-Ray single crystal diffraction, in combination with a quantum chemical calculation of NMR chemical shift coupled with an advanced statistical procedure DP4+. Compounds 1-8 were assessed NO suppressive effect in LPS-stimulated BV2 microglia cells. Compounds 2, 3, 6, and 8 exhibited significant inhibition against NO production in LPS-induced BV2 cells with IC50 values of 25.62, 17.29, 19.94 and 23.88 µM, stronger than or comparable to the positive control (AG) with IC50 value of 26.13 µM.


Asunto(s)
Alcaloides , Bignoniaceae , Alcaloides/farmacología , Bignoniaceae/química , Lipopolisacáridos/farmacología , Microglía , Monoterpenos/farmacología , Óxido Nítrico
15.
Biomed Chromatogr ; 36(6): e5357, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35191054

RESUMEN

Sophorae tonkinensis Radix et Rhizoma (S. tonkinensis) has been recorded as a 'poisonous' Chinese herbal medicine in Chinese Pharmacopoeia 2020. The clinical reaction reports of S. tonkinensis indicated its neurotoxicity; however, there still exists dispute about its toxic substances. At present, no report is available on the blood and brain prototype research of S. tonkinensis. Most studies focused on alkaloids and less on other compounds. Moreover, the constituents absorbed into the blood and brain have been rarely investigated so far. This study established a rapid and efficient qualitative analysis method using UPLC-Q-TOF-MSE to characterize the ingredients of S. tonkinensis and those entering into the rat's body after oral administration. A total of 91 compounds were identified in S. tonkinensis, of which 28 were confirmed by the standards. In addition, 30 and 19 prototypes were also first identified in the rat's blood and brain, respectively. It was found that most flavonoids, except alkaloids, were detected in the rat's body and distributed in the cerebrospinal fluid, suggesting that flavonoids may be one of the important toxic or effective substances of S. tonkinensis. This finding provides new clues and data for clarifying the toxicity or efficacy of this medicinal plant.


Asunto(s)
Alcaloides , Medicamentos Herbarios Chinos , Sophora , Alcaloides/química , Animales , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Flavonoides/análisis , Ratas , Rizoma/química , Sophora/química
16.
Mol Ther Oncolytics ; 24: 340-354, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35118192

RESUMEN

STAT3 is constitutively activated in multiple malignant tumors. Compared with regular estrogen receptor (ER)-positive breast cancers, the patients with tamoxifen-resistant breast cancers often exhibit higher levels of STAT3 phosphorylation. Narciclasine (Nar) possesses strong inhibiting effects against a variety of cancer cells; however, the underlying antitumor target(s)/mechanism(s) remains barely understood. In this study, we successfully identified the STAT3 was the direct target of Nar through the combination strategies of connectivity map and drug affinity responsive target stability. In MCF7 cells, Nar could suppress phosphorylation, activation, dimerization, and nuclear translocation of STAT3 by directly binding with the STAT3 SH2 domain. In addition, Nar could specifically degrade total STAT3 via the proteasome pathway in MCF-7/TR (tamoxifen-resistant MCF-7) cells. This distinct mechanism of Nar-targeting STAT3 was mainly attributed to the various levels of reactive oxygen species in regular and tamoxifen-resistant ER-positive breast cancer cells. Meanwhile, Nar-loaded nanoparticles could markedly decrease the protein levels of STAT3 in tumors, resulting in significantly increased MCF-7/TR xenograft tumor regression without obvious toxicity. Our findings successfully highlight the STAT3 as the direct therapeutic target of Nar in ER-positive breast cancer cells, especially, Nar leaded STAT3 degradation as a promising strategy for the tamoxifen-resistant breast cancer treatment.

17.
Zhongguo Zhong Yao Za Zhi ; 46(23): 6278-6288, 2021 Dec.
Artículo en Chino | MEDLINE | ID: mdl-34951255

RESUMEN

Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used to investigate the metabolites of maackiain in rats based on the prediction function of UNIFI data processing system and liver microsomal incubation in vitro. Ten metabolites of maackiain after oral absorption were reasonably deduced and characterized. It was found that the biotransformation of maackiain mainly included phase Ⅰ oxidation, dehydrogenation, phase Ⅱ sulfate conjugation, glucosylation conjugation, and glucuronic acid conjugation. Among them, the product of glucosylation conjugation, trifolirhizin, was identified by comparison with the reference for the first time. Liver microsomal incubation in vitro further confirmed the metabolites and metabolic pathways of maackiain in rats. The metabolites in the blood, urine, and feces complemented each other, which revealed the migration, metabolism, and excretion modes of maackiain in rats. This study lays a foundation for the further investigation of the metabolic mechanism of maackiain in vivo and the in-depth research on the mechanism of pharmacodynamics and toxicity.


Asunto(s)
Redes y Vías Metabólicas , Animales , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Pterocarpanos , Ratas , Ratas Sprague-Dawley
18.
Pharm Biol ; 59(1): 21-30, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33417512

RESUMEN

CONTEXT: Berberine (BBR) is used to treat diarrhoea and gastroenteritis in the clinic. It was found to have anticolon cancer effects. OBJECTIVE: To study the anticolon cancer mechanism of BBR by connectivity map (CMAP) analysis. MATERIALS AND METHODS: CMAP based mechanistic prediction was conducted by comparing gene expression profiles of 10 µM BBR treated MCF-7 cells with that of clinical drugs such as helveticoside, ianatoside C, pyrvinium, gossypol and trifluoperazine. The treatment time was 12 h and two biological replications were performed. The DMSO-treated cells were selected as a control. The interaction between 100 µM BBR and target protein was measured by cellular thermal shift assay. The protein expression of 1-9 µM BBR treated SW480 cells were measured by WB assay. Apoptosis, cell cycle arrest, mitochondrial membrane potential (MMP) of 1-9 µM BBR treated SW480 cells were measured by flow cytometry and Hoechst 33342 staining methods. RESULTS: CMAP analysis found 14 Hsp90, HDAC, PI3K or mTOR protein inhibitors have similar functions with BBR. The experiments showed that BBR inhibited SW480 cells proliferation with IC50 of 3.436 µM, induced apoptosis, autophage, MMP depolarization and arrested G1 phase of cell cycle at 1.0 µM. BBR dose-dependently up-regulated PTEN, while inhibited Notch1, PI3K, Akt and mTOR proteins at 1.0-9.0 µM (p < 0.05). BBR also acted synergistically with Hsp90 and HDAC inhibitor (0.01 µM) in SW480 cells at 0.5 and 1.0 µM. DISCUSSION AND CONCLUSIONS: The integrative gene expression-based chemical genomic method using CMAP analysis may be applicable for mechanistic studies of other multi-targets drugs.


Asunto(s)
Berberina/administración & dosificación , Neoplasias del Colon/metabolismo , Fosfohidrolasa PTEN/biosíntesis , Fosfatidilinositol 3-Quinasas/biosíntesis , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Receptor Notch1/biosíntesis , Serina-Treonina Quinasas TOR/biosíntesis , Células A549 , Antineoplásicos/administración & dosificación , Benzoquinonas/administración & dosificación , Neoplasias del Colon/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Células HCT116 , Humanos , Lactamas Macrocíclicas/administración & dosificación , Células MCF-7 , Nylons , Inhibidores de las Quinasa Fosfoinosítidos-3/administración & dosificación , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Pirroles/administración & dosificación , Receptor Notch1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Células THP-1 , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
19.
Nat Prod Bioprospect ; 11(1): 119-126, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33389669

RESUMEN

Four new 3,4-secocycloartane triterpenoids, pseudolactones A-D (1-4), were isolated from the ethanol extract of the cones of Pseudol arixamabilis. Their structures were established by extensive 1D- and 2D-NMR experiments. The cones of P. arixamabilis are enriched in the ring-expanded or cleaved cycloartane triterpenoids. This work provides new insight into cycloartane triterpenoids from the cones of P. arixamabilis.

20.
RSC Adv ; 11(60): 37752-37759, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-35498090

RESUMEN

Ingenol, as the precursor of the marketed drug ingenol mebutate, has been proven to have a variety of bioactivities. The purpose of this study was to identify the metabolites of ingenol using ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-Q/TOF-MS) combined with UNIFI software. Plasma, urine and fecal samples of rats were obtained and analyzed. A total of 18 metabolites were detected and identified in rat, including five phase II metabolites (M14-M18). Moreover, as microbial biotransformation is helpful to obtain sufficient reference standards of metabolites, the co-culture of ingenol with the fungus Cunninghamella elegans bio-110930 was also studied and yielded 4 phase I metabolites, in which reference standards of three metabolites were further obtained by preparative scale biotransformation. By matching their retention times, accurate masses, and fragment ions with metabolites in rat, the structures of three metabolites (M2, M3 and M4) were unambiguously confirmed by NMR technology. The results revealed that C. elegans bio-110930 functioned as an appropriate model to mimic and prepare phase I metabolism of ingenol in vivo to a certain extent. It also revealed that hydroxylation, oxygenation, sulfonation, and glucuronidation were the major metabolic pathways of ingenol. Furthermore, the first systematic metabolic study of ingenol is of great significance to elucidate the metabolites and metabolic pathways in vivo, which is helpful to predict metabolites of ingenol in humans, understand the elimination mechanism of ingenol, and clarify its effectiveness and toxicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...