Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Apoptosis ; 29(9-10): 1810-1823, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38704789

RESUMEN

Ferroptosis is a new programmed cell death characterized by iron-dependent lipid peroxidation. Targeting ferroptosis is considered a promising strategy for anti-cancer therapy. Recently, natural compound has gained increased attention for their advantage in cancer treatment, and the exploration of natural compounds as ferroptosis inducers offers a hopeful avenue for advancing cancer treatment modalities. Emodin is a natural anthraquinone derivative in many widely used Chinese medicinal herbs. In our previous study, we predicted that the anti-cancer effect of Emodin might related to ferroptosis by using RNA-seq in colorectal cancer (CRC). Thus, in this study, we aim to investigate the molecular mechanism underlying Emodin-mediated ferroptosis in CRC. Cell-based assays including CCK-8, colony formation, EdU, and Annexin V/PI staining were employed to assess Emodin's impact on cell proliferation and apoptosis. Furthermore, various techniques such as FerroOrange staining, C11-BODIPY 581/591 staining, iron, MDA, GSH detection assay and transmission electron microscopy were performed to examine the role of Emodin in ferroptosis. Additionally, specific NCOA4 knockdown cell lines were generated to elucidate the involvement of NCOA4 in Emodin-induced ferroptosis. Moreover, the effects of Emodin on ferroptosis were further confirmed through the application of inhibitors, including Ferrostatin-1, 3-MA, DFO, and PMA. As a results, Emodin inhibited proliferation and induced apoptosis in CRC cells. Emodin could decrease GSH content, xCT and GPX4 expression, meanwhile increasing ROS generation, MDA, and lipid peroxidation, and these effects could reverse by ferroptosis inhibitor, Ferostatin-1, iron chelator DFO, autophagy inhibitor 3-MA and NCOA4 silencing. Moreover, Emodin could inactivate NF-κb pathway, and PMA, an activator of NF-κb pathway could alleviate Emodin-induced ferroptosis in CRC cells. Xenograft mouse model also showed that Emodin suppressed tumor growth and induced ferroptosis in vivo. In conclusion, these results suggested that Emodin induced ferroptosis through NCOA4-mediated ferritinophagy by inactivating NF-κb pathway in CRC cells. These findings not only identified a novel role for Emodin in ferroptosis but also indicated that Emodin may be a valuable candidate for the development of an anti-cancer agent.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Emodina , Ferroptosis , FN-kappa B , Coactivadores de Receptor Nuclear , Transducción de Señal , Emodina/farmacología , Ferroptosis/efectos de los fármacos , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , FN-kappa B/metabolismo , FN-kappa B/genética , Coactivadores de Receptor Nuclear/metabolismo , Coactivadores de Receptor Nuclear/genética , Animales , Línea Celular Tumoral , Ratones , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ferritinas/metabolismo , Ferritinas/genética , Apoptosis/efectos de los fármacos , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Peroxidación de Lípido/efectos de los fármacos
2.
Sci Rep ; 7(1): 15247, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29127310

RESUMEN

To investigate wavefront aberrations in the entire eye and in the internal optics (lens) and retinal image qualities according to different lenticular opacity types and densities. Forty-one eyes with nuclear cataract, 33 eyes with cortical cataract, and 29 eyes with posterior subcapsular cataract were examined. In each group, wavefront aberrations in the entire eye and in the internal optics and retinal image quality were measured using a raytracing aberrometer. Eyes with cortical cataracts showed significantly higher coma-like aberrations compared to the other two groups in both entire eye and internal optic aberrations (P = 0.012 and P = 0.007, respectively). Eyes with nuclear cataract had lower spherical-like aberrations than the other two groups in both entire eye and internal optics aberrations (P < 0.001 and P < 0.001, respectively). In the nuclear cataract group, nuclear lens density was negatively correlated with internal spherical aberrations (r = -0.527, P = 0.005). Wavefront technology is useful for objective and quantitative analysis of retinal image quality deterioration in eyes with different early lenticular opacity types and densities. Understanding the wavefront optical properties of different crystalline lens opacities may help ophthalmic surgeons determine the optimal time to perform cataract surgery.


Asunto(s)
Catarata/diagnóstico por imagen , Topografía de la Córnea/métodos , Cristalino/diagnóstico por imagen , Retina/diagnóstico por imagen , Anciano , Topografía de la Córnea/instrumentación , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA