Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Metab ; 6(5): 899-913, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561509

RESUMEN

Disruption of circadian rhythm during pregnancy produces adverse health outcomes in offspring; however, the role of maternal circadian rhythms in the immune system of infants and their susceptibility to inflammation remains poorly understood. Here we show that disruption of circadian rhythms in pregnant mice profoundly aggravates the severity of neonatal inflammatory disorders in both male and female offspring, such as necrotizing enterocolitis and sepsis. The diminished maternal production of docosahexaenoic acid (DHA) and the impaired immunosuppressive function of neonatal myeloid-derived suppressor cells (MDSCs) contribute to this phenomenon. Mechanistically, DHA enhances the immunosuppressive function of MDSCs via PPARγ-mediated mitochondrial oxidative phosphorylation. Transfer of MDSCs or perinatal supplementation of DHA relieves neonatal inflammation induced by maternal rhythm disruption. These observations collectively demonstrate a previously unrecognized role of maternal circadian rhythms in the control of neonatal inflammation via metabolic reprograming of myeloid cells.


Asunto(s)
Animales Recién Nacidos , Ritmo Circadiano , Inflamación , Células Mieloides , Animales , Femenino , Ratones , Inflamación/metabolismo , Embarazo , Células Mieloides/metabolismo , Masculino , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Células Supresoras de Origen Mieloide/metabolismo , Ratones Endogámicos C57BL
2.
Arterioscler Thromb Vasc Biol ; 44(1): 202-217, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37942607

RESUMEN

BACKGROUND: Macrophages have versatile roles in atherosclerosis. SHP2 (Src homology 2 containing protein tyrosine phosphatase 2) has been demonstrated to play a critical role in regulating macrophage activation. However, the mechanism of SHP2 regulation of macrophage function in an atherosclerotic microenvironment remains unknown. METHODS: APOE (apolipoprotein E) or LDLR (low-density lipoprotein receptor) null mice treated with SHP099 were fed a Western diet for 8 weeks, while Shp2MKO:ApoE-/- or Shp2MKO:Ldlr-/- mice and exo-AAV8-SHP2E76K/ApoE-/- mice were fed a Western diet for 12 weeks. In vitro, levels of proinflammatory factors and phagocytic function were then studied in mouse peritoneal macrophages. RNA sequencing was used to identify PPARγ (peroxisome proliferative activated receptor γ) as the key downstream molecule. A PPARγ agonist was used to rescue the phenotypes observed in SHP2-deleted mice. RESULTS: Pharmacological inhibition and selective deletion in macrophages of SHP2 aggravated atherosclerosis in APOE and LDLR null mice with increased plaque macrophages and apoptotic cells. In vitro, SHP2 deficiency in APOE and LDLR null macrophages enhanced proinflammatory polarization and its efferocytosis was dramatically impaired. Conversely, the expression of gain-of-function mutation of SHP2 in mouse macrophages reduced atherosclerosis. The SHP2 agonist lovastatin repressesed macrophage inflammatory activation and enhanced efferocytosis. Mechanistically, RNA sequencing analysis identified PPARγ as a key downstream transcription factor. PPARγ was decreased in macrophages upon SHP2 deletion and inhibition. Importantly, PPARγ agonist decreased atherosclerosis in SHP2 knockout mice, restored efferocytotic defects, and reduced inflammatory activation in SHP2 deleted macrophages. PPARγ was decreased by the ubiquitin-mediated degradation upon SHP2 inhibition or deletion. Finally, we found that SHP2 was downregulated in atherosclerotic vessels. CONCLUSIONS: Overall, SHP2 in macrophages was found to act as an antiatherosclerotic regulator by stabilizing PPARγ in APOE/LDLR null mice.


Asunto(s)
Aterosclerosis , PPAR gamma , Animales , Ratones , Apolipoproteínas E , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma/metabolismo
3.
Immunity ; 56(11): 2542-2554.e7, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37714152

RESUMEN

Group 2 innate lymphoid cells (ILC2s) are crucial in promoting type 2 inflammation that contributes to both anti-parasite immunity and allergic diseases. However, the molecular checkpoints in ILC2s that determine whether to immediately launch a proinflammatory response are unknown. Here, we found that retinoid X receptor gamma (Rxrg) was highly expressed in small intestinal ILC2s and rapidly suppressed by alarmin cytokines. Genetic deletion of Rxrg did not impact ILC2 development but facilitated ILC2 responses and the tissue inflammation induced by alarmins. Mechanistically, RXRγ maintained the expression of its target genes that support intracellular cholesterol efflux, which in turn reduce ILC2 proliferation. Furthermore, RXRγ expression prevented ILC2 response to mild stimulations, including low doses of alarmin cytokine and mechanical skin injury. Together, we propose that RXRγ expression and its mediated lipid metabolic states function as a cell-intrinsic checkpoint that confers the threshold of ILC2 activation in the small intestine.


Asunto(s)
Inmunidad Innata , Receptor gamma X Retinoide , Humanos , Alarminas , Linfocitos , Inflamación , Citocinas/metabolismo , Intestino Delgado/metabolismo
4.
iScience ; 26(5): 106588, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37138776

RESUMEN

Microglia exhibit diverse phenotypes in various central nervous system disorders and metabolic pathways exert crucial effects on microglial activation and effector functions. Here, we discovered two novel distinct microglial clusters, functionally associated with enhanced phagocytosis (PEMs) and myelination (MAMs) respectively, in human patients with multiple sclerosis by integrating public snRNA-seq data. Microglia adopt a PEMs phenotype during the early phase of demyelinated lesions, predominated in pro-inflammatory responses and aggravated glycolysis, while MAMs mainly emerged during the later phase, with regenerative signatures and enhanced oxidative phosphorylation. In addition, microglial triggering receptor expressed on myeloid cells 2 (Trem2) was greatly involved in the phenotype transition in demyelination, but not indispensable for microglia transition toward PEMs. Rosiglitazone could promote microglial phenotype conversion from PEMs to MAMs, thus favoring myelin repair. Taken together, these findings provide insights into therapeutic interventions targeting immunometabolism to switch microglial phenotypes and facilitate regenerative capacity in demyelination.

5.
BMC Cardiovasc Disord ; 21(1): 471, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34592933

RESUMEN

BACKGROUND: The association between anxiety and atrial fibrillation (AF) remains unclear. Moreover, this association has rarely been studied in Chinese individuals aged 60 years or older. This study investigated the association between anxiety and AF in a community-based case-control study of older adult residents in urban China. METHODS: The cases and controls were from a community-based study conducted in the Jingansi community in Shanghai, China, between January 2010 and December 2012. A total of 3622 residents aged 60 years or older without severe vision, hearing, or speaking impairments were eligible to participate in the physical examinations and questionnaire survey. AF was assessed based on a previous physician's diagnosis, electrocardiogram, ambulatory electrocardiogram, or echocardiogram. Anxiety was evaluated using the Zung Self-Rating Anxiety Scale (ZSAS). Using the AF group as a reference, the control group consisted of randomly selected age- and sex-matched individuals in a 1:5 ratio (case:control = 1:5). The association between anxiety and AF in the AF group and the multifactor-matched control group was explored using logistic regression. RESULTS: In the AF and control groups, after adjusting for a history of coronary heart disease, valvular heart disease, hypertension, stroke, hyperlipidemia, and diabetes, as well as depression score, ZSAS scores (odds ratio 1.07; 95% confidence interval 1.02-1.12; p = 0.003), and anxiety symptoms (odds ratio 3.94; 95% confidence interval 1.06-14.70; p = 0.041) were associated with AF. CONCLUSIONS: Anxiety symptoms were associated with AF in a Chinese older population. This suggests that older adults who have anxiety symptoms may need psychological intervention or treatment in daily life and care.


Asunto(s)
Ansiedad/epidemiología , Fibrilación Atrial/epidemiología , Factores de Edad , Anciano , Anciano de 80 o más Años , Ansiedad/diagnóstico , Ansiedad/fisiopatología , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/psicología , Estudios de Casos y Controles , China/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Medición de Riesgo , Factores de Riesgo
6.
Nat Commun ; 11(1): 438, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974378

RESUMEN

Dysfunction of invariant natural killer T (iNKT) cells in tumor microenvironment hinders their anti-tumor efficacy, and the underlying mechanisms remain unclear. Here we report that iNKT cells increase lipid biosynthesis after activation, and that is promoted by PPARγ and PLZF synergically through enhancing transcription of Srebf1. Among those lipids, cholesterol is required for the optimal IFN-γ production from iNKT cells. Lactic acid in tumor microenvironment reduces expression of PPARγ in intratumoral iNKT cells and consequently diminishes their cholesterol synthesis and IFN-γ production. Importantly, PPARγ agonist pioglitazone, a thiazolidinedione drug for type 2 diabetes, successfully restores IFN-γ production in tumor-infiltrating iNKT cells from both human patients and mouse models. Combination of pioglitazone and alpha-galactosylceramide treatments significantly enhances iNKT cell-mediated anti-tumor immune responses and prolongs survival of tumor-bearing mice. Our studies provide a strategy to augment the anti-tumor efficacy of iNKT cell-based immunotherapies via promoting their lipid biosynthesis.


Asunto(s)
Inmunoterapia/métodos , Lípidos/biosíntesis , Células T Asesinas Naturales/fisiología , Microambiente Tumoral/inmunología , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Colesterol/metabolismo , Galactosilceramidas/farmacología , Regulación de la Expresión Génica , Humanos , Interferón gamma/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Células T Asesinas Naturales/efectos de los fármacos , Células T Asesinas Naturales/patología , PPAR gamma/genética , PPAR gamma/metabolismo , Pioglitazona/farmacología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Microambiente Tumoral/efectos de los fármacos
7.
Atherosclerosis ; 274: 199-205, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29800789

RESUMEN

BACKGROUND AND AIMS: Agonists of peroxisome proliferator-activated receptor gamma (Pparγ) have been demonstrated to reduce the risk of myocardial infarction (MI) in clinical trials and animal experiments. However, the cellular and molecular mechanisms are not completely understood. We aimed to reveal the functions of myeloid Pparγ in MI and explore the potential mechanisms in this study. METHODS: Myeloid Pparγ knockout (MPGKO) mice (n = 12) and control mice (n = 8) underwent coronary artery ligation to induce MI. Another cohort of MPGKO mice and control mice underwent coronary artery ligation and were then treated with IgG or neutralizing antibodies against interleukin (IL)-1ß. Infarct size was determined by TTC staining and cardiac function was measured using echocardiography. Conditioned media from GW9662- or vehicle-treated macrophages were used to treat H9C2 cardiomyocyte cell line. Gene expression was analyzed using quantitative PCR. Reactive oxygen species were measured using flow cytometry. RESULTS: Myeloid Pparγ deficiency significantly increased myocardial infarct size. Cardiac hypertrophy was also exacerbated in MPGKO mice, with upregulation of ß-myosin heavy chain (Mhc) and brain natriuretic peptide (Bnp) and downregulation of α-Mhc in the non-infarcted zone. Conditioned media from GW9662-treated macrophages increased expression of ß-Mhc and Bnp in H9C2 cells. Echocardiographic measurements showed that MPGKO mice had worsen cardiac dysfunction after MI. Myeloid Pparγ deficiency increased gene expression of NADPH oxidase subunits (Nox2 and Nox4) in the non-infarcted zone after MI. Conditioned media from GW9662-treated macrophages increased reactive oxygen species in H9C2 cells. Expression of inflammatory genes such as IL-1ß and IL-6 was upregulated in the non-infarcted zone of MPGKO mice after MI. With the injection of neutralizing antibodies against IL-1ß, control mice and MPGKO mice had comparable cardiac function and expression of inflammatory genes after MI. CONCLUSIONS: Myeloid Pparγ deficiency exacerbates MI, likely through increased oxidative stress and cardiac inflammation.


Asunto(s)
Macrófagos Peritoneales/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , PPAR gamma/deficiencia , Animales , Línea Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Predisposición Genética a la Enfermedad , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Ratones Noqueados , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/patología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , NADPH Oxidasa 2/genética , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Péptido Natriurético Encefálico/genética , Péptido Natriurético Encefálico/metabolismo , Estrés Oxidativo , PPAR gamma/genética , Fenotipo , Transducción de Señal , Factores de Tiempo , Función Ventricular Izquierda , Remodelación Ventricular
8.
Circ Res ; 120(10): 1584-1597, 2017 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-28298295

RESUMEN

RATIONALE: Hypertension remains to be a global public health burden and demands novel intervention strategies such as targeting T cells and T-cell-derived cytokines. Mineralocorticoid receptor (MR) antagonists have been clinically used to treat hypertension. However, the function of T-cell MR in blood pressure (BP) regulation has not been elucidated. OBJECTIVE: We aim to determine the role of T-cell MR in BP regulation and to explore the mechanism. METHODS AND RESULTS: Using T-cell MR knockout mouse in combination with angiotensin II-induced hypertensive mouse model, we demonstrated that MR deficiency in T cells strikingly decreased both systolic and diastolic BP and attenuated renal and vascular damage. Flow cytometric analysis showed that T-cell MR knockout mitigated angiotensin II-induced accumulation of interferon-gamma (IFN-γ)-producing T cells, particularly CD8+ population, in both kidneys and aortas. Similarly, eplerenone attenuated angiotensin II-induced elevation of BP and accumulation of IFN-γ-producing T cells in wild-type mice. In cultured CD8+ T cells, T-cell MR knockout suppressed IFN-γ expression whereas T-cell MR overexpression and aldosterone both enhanced IFN-γ expression. At the molecular level, MR interacted with NFAT1 (nuclear factor of activated T-cells 1) and activator protein-1 in T cells. Finally, T-cell MR overexpressing mice manifested more elevated BP compared with control mice after angiotensin II infusion and such difference was abolished by IFN-γ-neutralizing antibodies. CONCLUSIONS: MR may interact with NFAT1 and activator protein-1 to control IFN-γ in T cells and to regulate target organ damage and ultimately BP. Targeting MR in T cells specifically may be an effective novel approach for hypertension treatment.


Asunto(s)
Presión Sanguínea/fisiología , Interferón gamma/fisiología , Receptores de Mineralocorticoides/fisiología , Linfocitos T/fisiología , Acetilcolina/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Hipertensión/genética , Hipertensión/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
9.
J Biol Chem ; 292(3): 925-935, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-27881672

RESUMEN

Mineralocorticoid receptor (MR) has been considered as a potential target for treating atherosclerosis. However, the cellular and molecular mechanisms are not completely understood. We aim to explore the functions and mechanisms of macrophage MR in atherosclerosis. Atherosclerosis-susceptible LDLRKO chimeric mice with bone marrow cells from floxed control mice or from myeloid MR knock-out (MRKO) mice were generated and fed with high cholesterol diet. Oil red O staining showed that MRKO decreased atherosclerotic lesion area in LDLRKO mice. In another mouse model of atherosclerosis, MRKO/APOEKO mice and floxed control/APOEKO mice were generated and treated with angiotensin II. Similarly, MRKO inhibited the atherosclerotic lesion area in APOEKO mice. Histological analysis showed that MRKO increased collagen coverage and decreased necrosis and macrophage accumulation in the lesions. In vitro results demonstrated that MRKO suppressed macrophage foam cell formation and up-regulated the expression of genes involved in cholesterol efflux. Furthermore, MRKO decreased accumulation of apoptotic cells and increased effective efferocytosis in atherosclerotic lesions. In vitro study further revealed that MRKO increased the phagocytic index of macrophages without affecting their apoptosis. In conclusion, MRKO reduces high cholesterol- or angiotensin II-induced atherosclerosis and favorably changes plaque composition, likely improving plaque stability. Mechanistically, MR deficiency suppresses macrophage foam cell formation and up-regulates expression of genes related to cholesterol efflux, as well as increases effective efferocytosis and phagocytic capacity of macrophages.


Asunto(s)
Apoptosis , Aterosclerosis/metabolismo , Células Espumosas/metabolismo , Receptores de Mineralocorticoides/deficiencia , Regulación hacia Arriba , Angiotensina II/efectos adversos , Angiotensina II/farmacología , Animales , Aterosclerosis/inducido químicamente , Aterosclerosis/genética , Aterosclerosis/patología , Colesterol/efectos adversos , Colesterol/metabolismo , Colesterol/farmacología , Modelos Animales de Enfermedad , Femenino , Células Espumosas/patología , Masculino , Ratones , Ratones Noqueados , Receptores de Mineralocorticoides/metabolismo
10.
Arterioscler Thromb Vasc Biol ; 36(5): 874-85, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26966277

RESUMEN

OBJECTIVE: Restenosis after percutaneous coronary intervention remains to be a serious medical problem. Although mineralocorticoid receptor (MR) has been implicated as a potential target for treating restenosis, the cellular and molecular mechanisms are largely unknown. This study aims to explore the functions of macrophage MR in neointimal hyperplasia and to delineate the molecular mechanisms. APPROACH AND RESULTS: Myeloid MR knockout (MMRKO) mice and controls were subjected to femoral artery injury. MMRKO reduced intima area and intima/media ratio, Ki67- and BrdU-positive vascular smooth muscle cells, expression of proinflammatory molecules, and macrophage accumulation in injured arteries. MMRKO macrophages migrated less in culture. MMRKO decreased Ki67- and BrdU-positive macrophages in injured arteries. MMRKO macrophages were less Ki67-positive in culture. Conditioned media from MMRKO macrophages induced less migration, Ki67 positivity, and proinflammatory gene expression of vascular smooth muscle cells. After lipopolysaccharide treatment, MMRKO macrophages had decreased p-cFos and p-cJun compared with control macrophages, suggesting suppressed activation of activator protein-1 (AP1). Nuclear factor-κB (NF-κB) pathway was also inhibited by MMRKO, manifested by decreased p-IκB kinase-ß and p-IκBα, increased IκBα expression, decreased nuclear translocation of p65 and p50, as welll as decreased phosphorylation and expression of p65. Finally, overexpression of serum-and-glucocorticoid-inducible-kinase-1 (SGK1) attenuated the effects of MR deficiency in macrophages. CONCLUSIONS: Selective deletion of MR in myeloid cells limits macrophage accumulation and vascular inflammation and, therefore, inhibits neointimal hyperplasia and vascular remodeling. Mechanistically, MR deficiency suppresses migration and proliferation of macrophages and leads to less vascular smooth muscle cell activation. At the molecular level, MR deficiency suppresses macrophage inflammatory response via SGK1-AP1/NF-κB pathways.


Asunto(s)
Proteínas Inmediatas-Precoces/metabolismo , Inflamación/enzimología , Macrófagos/enzimología , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , FN-kappa B/metabolismo , Neointima , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Mineralocorticoides/deficiencia , Factor de Transcripción AP-1/metabolismo , Lesiones del Sistema Vascular/enzimología , Animales , Movimiento Celular , Proliferación Celular , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Arteria Femoral/enzimología , Arteria Femoral/lesiones , Arteria Femoral/metabolismo , Predisposición Genética a la Enfermedad , Hiperplasia , Proteínas Inmediatas-Precoces/genética , Inflamación/genética , Inflamación/patología , Inflamación/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/lesiones , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Comunicación Paracrina , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Células RAW 264.7 , Interferencia de ARN , Receptores de Mineralocorticoides/genética , Transducción de Señal , Factores de Tiempo , Transfección , Remodelación Vascular , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/patología , Lesiones del Sistema Vascular/prevención & control
11.
Cell Res ; 25(8): 893-910, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26206316

RESUMEN

High salt is positively associated with the risk of many diseases. However, little is known about the mechanisms. Here we showed that high salt increased proinflammatory molecules, while decreased anti-inflammatory and proendocytic molecules in both human and mouse macrophages. High salt also potentiated lipopolysaccharide-induced macrophage activation and suppressed interleukin 4-induced macrophage activation. High salt induced the proinflammatory aspects by activating p38/cFos and/or Erk1/2/cFos pathways, while inhibited the anti-inflammatory and proendocytic aspects by Erk1/2/signal transducer and activator of transcription 6 pathway. Consistent with the in vitro results, high-salt diet increased proinflammatory gene expression of mouse alveolar macrophages. In mouse models of acute lung injury, high-salt diet aggravated lipopolysaccharide-induced pulmonary macrophage activation and inflammation in lungs. These results identify a novel macrophage activation state, M(Na), and high salt as a potential environmental risk factor for lung inflammation through the induction of M(Na).


Asunto(s)
Activación de Macrófagos , Macrófagos/efectos de los fármacos , Cloruro de Sodio/efectos adversos , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/fisiopatología , Animales , Antiinflamatorios/farmacología , Humanos , Inflamación , Lipopolisacáridos/farmacología , Sistema de Señalización de MAP Quinasas , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/fisiología , Macrófagos/fisiología , Ratones
12.
Biochem Biophys Res Commun ; 422(4): 639-42, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22609406

RESUMEN

BACKGROUND: Experiments using Cre recombinase to study smooth muscle specific functions rely on strict specificity of Cre transgene expression. Therefore, accurate determination of Cre activity is critical to the interpretation of experiments using smooth muscle specific Cre. METHODS AND RESULTS: Two lines of smooth muscle protein 22 α-Cre (SM22α-Cre) mice were bred to floxed mice in order to define Cre transgene expression. Southern blotting demonstrated that SM22α-Cre was expressed not only in tissues abundant of smooth muscle, but also in spleen, which consists largely of immune cells including myeloid and lymphoid cells. PCR detected SM22α-Cre expression in peripheral blood and peritoneal macrophages. Analysis of SM22α-Cre mice crossed with a recombination detector GFP mouse revealed GFP expression, and hence recombination, in circulating neutrophils and monocytes by flow cytometry. CONCLUSIONS: SM22α-Cre mediates recombination not only in smooth muscle cells, but also in myeloid cells including neutrophils, monocytes, and macrophages. Given the known contributions of myeloid cells to cardiovascular phenotypes, caution should be taken when interpreting data using SM22α-Cre mice to investigate smooth muscle specific functions. Strategies such as bone marrow transplantation may be necessary when SM22α-Cre is used to differentiate the contribution of smooth muscle cells versus myeloid cells to observed phenotypes.


Asunto(s)
Proteínas de Microfilamentos/genética , Proteínas Musculares/genética , Células Mieloides/metabolismo , Animales , Integrasas/genética , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Transgénicos , Monocitos/metabolismo , Miocitos del Músculo Liso/metabolismo , Neutrófilos/metabolismo , Recombinación Genética , Bazo/metabolismo
13.
J Integr Plant Biol ; 52(3): 340-6, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20377695

RESUMEN

The ability of abscisic acid (ABA) to modulate positive interactions between Arabidopsis thaliana individuals under salinity stress was investigated using abi1-1 (insensitive to ABA), era1-2 (hypersensitive to ABA) mutant and wild type plants. The results showed that sensitivity to ABA affects relative interaction intensity (RII) between Arabidopsis thaliana individuals. The neighbor removal experiments also confirmed the role of phenotypic responses in linking plant-plant interactions and sensitivity to ABA. For abi1-1 mutants, the absolute value differences between neighbor removal and control of stem length, root length, leaf area, leaf thickness, flower density, above biomass/belowground biomass (A/U), photosynthetic rate, stomatal conductance, leaf water content and water-use efficiency were smaller than those of the wild type, while for era1-2 mutants, these absolute value differences were larger than those of the wild type. Thus, it is suggested that positive interactions between Arabidopsis thaliana individuals are at least partly modulated by different sensitivity to ABA through different physiological and phenotypic plasticity.


Asunto(s)
Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Análisis de Varianza , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Genotipo , Mutación/genética , Fotosíntesis/efectos de los fármacos , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Salinidad , Estrés Fisiológico/efectos de los fármacos , Agua/fisiología
14.
Acta Pharmacol Sin ; 27(7): 950-8, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16787582

RESUMEN

AIM: Each cell is the production of multiple signal transduction programs involving the expression of thousands of genes. This study aims to gain insights into the gene regulation mechanisms of stomatal development and will investigate the relationships among some signaling transduction pathways. METHODS: Nail enamel printing was conducted to observe the stomatal indices of wild type and 10 mutants (plant hormone mutants, Pi-starvation induced CaM mutants and Pi-starvation-response mutant) in Arabidopsis, and their stomatal indices were analyzed by ANOVA. We analyzed the stomatal indices of 10 Arabidopsis mutants were analyzed by a model PRGE (potential relative effect of genes) to research relations among these genes. RESULTS: In wild type and 10 mutants, the stomatal index did not differ with respect to location on the lower epidermis. Compared with wild type, the stomatal indices of 10 mutants all decreased significantly. Moreover, significant changes and interactions might exist between some mutant genes. CONCLUSION: It was the stomatal intensity in Arabidopsis might be highly sensitive to most mutations in genome. While the effect of many gene mutations on the stomatal index might be negative, we also could assume the stomatal development was regulated by a signal network in which one signal transduction change might influence the stomatal development more or less, and the architecture might be reticulate. Furthermore, we could speculate that calcium was a hub in stomatal development signal regulation network, and other signal transduction pathways regulated stomatal development by influencing or being influenced by calcium signal transduction pathways.


Asunto(s)
Arabidopsis , Señalización del Calcio , Calcio/fisiología , Redes Reguladoras de Genes , Genes de Plantas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Calcio/metabolismo , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Epidermis de la Planta/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Transducción de Señal
15.
J Zhejiang Univ Sci B ; 7(4): 283-90, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16532530

RESUMEN

Forest plays very important roles in global system with about 35% land area producing about 70% of total land net production. It is important to consider both elevated CO(2) concentrations and different soil moisture when the possible effects of elevated CO(2) concentration on trees are assessed. In this study, we grew Cinnamomum camphora seedlings under two CO(2) concentrations (350 micromol/mol and 500 micromol/mol) and three soil moisture levels [80%, 60% and 40% FWC (field water capacity)] to focus on the effects of exposure of trees to elevated CO(2) on underground and aboveground plant growth, and its dependence on soil moisture. The results indicated that high CO(2) concentration has no significant effects on shoot height but significantly impacts shoot weight and ratio of shoot weight to height under three soil moisture levels. The response of root growth to CO(2) enrichment is just reversed, there are obvious effects on root length growth, but no effects on root weight growth and ratio of root weight to length. The CO(2) enrichment decreased 20.42%, 32.78%, 20.59% of weight ratio of root to shoot under 40%, 60% and 80% FWC soil water conditions, respectively. And elevated CO(2) concentration significantly increased the water content in aboveground and underground parts. Then we concluded that high CO(2) concentration favours more tree aboveground biomass growth than underground biomass growth under favorable soil water conditions. And CO(2) enrichment enhanced lateral growth of shoot and vertical growth of root. The responses of plants to elevated CO(2) depend on soil water availability, and plants may benefit more from CO(2) enrichment with sufficient water supply.


Asunto(s)
Dióxido de Carbono/metabolismo , Cinnamomum camphora/crecimiento & desarrollo , Suelo , Árboles/crecimiento & desarrollo , Agua/metabolismo , Biomasa , Cinnamomum camphora/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Árboles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...