Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6147, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034334

RESUMEN

Developing devices with a wide-temperature range persistent photoconductivity (PPC) and ultra-low power consumption remains a significant challenge for optical synaptic devices used in neuromorphic computing. By harnessing the PPC properties in materials, it can achieve optical storage and neuromorphic computing, surpassing the von Neuman architecture-based systems. However, previous research implemented PPC required additional gate voltages and low temperatures, which need additional energy consumption and PPC cannot be achieved across a wide temperature range. Here, we fabricated a simple heterojunctions using zinc(II)-meso-tetraphenyl porphyrin (ZnTPP) and single-walled carbon nanotubes (SWCNTs). By leveraging the strong binding energy at the heterojunction interface and the unique band structure, the heterojunction achieved PPC over an exceptionally wide temperature range (77 K-400 K). Remarkably, it demonstrated nonvolatile storage for up to 2×104 s, without additional gate voltage. The minimum energy consumption for each synaptic event is as low as 6.5 aJ. Furthermore, we successfully demonstrate the feasibility to manufacture a flexible wafer-scale array utilizing this heterojunction. We applied it to autonomous driving under extreme temperatures and achieved as a high impressive accuracy rate as 94.5%. This tunable and stable wide-temperature PPC capability holds promise for ultra-low-power neuromorphic computing.

3.
Nanomaterials (Basel) ; 10(8)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32717952

RESUMEN

Resistive random access memory (RRAM) devices are receiving increasing extensive attention due to their enhanced properties such as fast operation speed, simple device structure, low power consumption, good scalability potential and so on, and are currently considered to be one of the next-generation alternatives to traditional memory. In this review, an overview of RRAM devices is demonstrated in terms of thin film materials investigation on electrode and function layer, switching mechanisms and artificial intelligence applications. Compared with the well-developed application of inorganic thin film materials (oxides, solid electrolyte and two-dimensional (2D) materials) in RRAM devices, organic thin film materials (biological and polymer materials) application is considered to be the candidate with significant potential. The performance of RRAM devices is closely related to the investigation of switching mechanisms in this review, including thermal-chemical mechanism (TCM), valance change mechanism (VCM) and electrochemical metallization (ECM). Finally, the bionic synaptic application of RRAM devices is under intensive consideration, its main characteristics such as potentiation/depression response, short-/long-term plasticity (STP/LTP), transition from short-term memory to long-term memory (STM to LTM) and spike-time-dependent plasticity (STDP) reveal the great potential of RRAM devices in the field of neuromorphic application.

4.
Micromachines (Basel) ; 11(4)2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32218324

RESUMEN

Resistive random access memory (RRAM), which is considered as one of the most promising next-generation non-volatile memory (NVM) devices and a representative of memristor technologies, demonstrated great potential in acting as an artificial synapse in the industry of neuromorphic systems and artificial intelligence (AI), due its advantages such as fast operation speed, low power consumption, and high device density. Graphene and related materials (GRMs), especially graphene oxide (GO), acting as active materials for RRAM devices, are considered as a promising alternative to other materials including metal oxides and perovskite materials. Herein, an overview of GRM-based RRAM devices is provided, with discussion about the properties of GRMs, main operation mechanisms for resistive switching (RS) behavior, figure of merit (FoM) summary, and prospect extension of GRM-based RRAM devices. With excellent physical and chemical advantages like intrinsic Young's modulus (1.0 TPa), good tensile strength (130 GPa), excellent carrier mobility (2.0 × 105 cm2∙V-1∙s-1), and high thermal (5000 Wm-1∙K-1) and superior electrical conductivity (1.0 × 106 S∙m-1), GRMs can act as electrodes and resistive switching media in RRAM devices. In addition, the GRM-based interface between electrode and dielectric can have an effect on atomic diffusion limitation in dielectric and surface effect suppression. Immense amounts of concrete research indicate that GRMs might play a significant role in promoting the large-scale commercialization possibility of RRAM devices.

5.
Micromachines (Basel) ; 10(7)2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31269730

RESUMEN

Resistive random access memory (RRAM) devices with Ni/AlOx/Pt-structure were manufactured by deposition of a solution-based aluminum oxide (AlOx) dielectric layer which was subsequently annealed at temperatures from 200 °C to 300 °C, in increments of 25 °C. The devices displayed typical bipolar resistive switching characteristics. Investigations were carried out on the effect of different annealing temperatures for associated RRAM devices to show that performance was correlated with changes of hydroxyl group concentration in the AlOx thin films. The annealing temperature of 250 °C was found to be optimal for the dielectric layer, exhibiting superior performance of the RRAM devices with the lowest operation voltage (<1.5 V), the highest ON/OFF ratio (>104), the narrowest resistance distribution, the longest retention time (>104 s) and the most endurance cycles (>150).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA