Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(29): 10754-10762, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37428629

RESUMEN

Plastic has been demonstrated to release nanoplastics (NPs) into the atmosphere under sunlight irradiation, posing a continuous health risk to the respiratory system. However, due to lack of reliable quantification methods, the occurrence and distribution of NPs in the atmosphere remain unclear. Polystyrene (PS) micro- and nanoplastics (MNPs) represent a crucial component of atmospheric MNPs. In this study, we proposed a simple and robust method for determining the concentration of atmospheric PS NPs using pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). Following active sampling, the filter membrane is directly ground and introduced into the Py-GC/MS system to quantify PS NPs. The proposed method demonstrates excellent reproducibility and high sensitivity, with a detection limit as low as down to 15 pg/m3 for PS NPs. By using this method, the occurrence of PS NPs in both indoor and outdoor atmospheres has been confirmed. Furthermore, the results showed that the abundance of outdoor PS NPs was significantly higher than that of indoor samples, and there was no significant difference in NP vertical distribution within a height of 28.6 m. This method can be applied for the routine monitoring of atmospheric PS NPs and for evaluating their risk to human health.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Humanos , Poliestirenos , Microplásticos , Cromatografía de Gases y Espectrometría de Masas , Pirólisis , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/análisis , Nanopartículas/química
2.
Environ Sci Technol ; 57(32): 12010-12018, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37506359

RESUMEN

Determination of microplastics and nanoplastics (MNPs), especially small MPs and NPs (<150 µm), in solid environmental matrices is a challenging task due to the formation of stable aggregates between MNPs and natural colloids. Herein, a novel method for extracting small MPs and NPs embedded in soils/sediments/sludges has been developed by combining tetramethylammonium hydroxide (TMAH) digestion with dichloromethane (DCM) dissolution. The solid samples were digested with TMAH, and the collected precipitate was washed with anhydrous ethanol to eliminate the natural organic matter. Then, the MNPs in precipitate were extracted by dissolving in DCM under ultrasonic conditions. Under the optimized digestion and extraction conditions, the factors including sizes and concentrations of MNPs showed insignificant effects on the extraction process. The feasibility of this sample preparation method was verified by the satisfactory spiked recoveries (79.6-91.4%) of polystyrene, polyethylene, polypropylene, poly(methyl methacrylate), polyvinyl chloride, and polyethylene terephthalate MNPs in soil/sediment/sludge samples. The proposed sample preparation method was coupled with pyrolysis gas chromatography-mass spectrometry to determine trace small MPs and NPs with a relatively low detection limit of 2.3-29.2 µg/g. Notably, commonly used MNPs were successfully detected at levels of 4.6-51.4 µg/g in 6 soil/sediment/sludge samples. This proposed method is promising for evaluating small solid-embedded MNP pollution.


Asunto(s)
Microplásticos , Plásticos , Plásticos/análisis , Cromatografía de Gases y Espectrometría de Masas , Aguas del Alcantarillado/química , Cloruro de Metileno/análisis , Solubilidad , Suelo/química , Digestión
3.
Environ Sci Technol ; 56(24): 17694-17701, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36480640

RESUMEN

Nanoplastics (NPs) have been successively detected in different environmental matrixes and have aroused great concern worldwide. However, the fate of NPs in real environments such as seawater remains unclear, impeding their environmental risk assessment. Herein, multiple techniques were employed to monitor the particle number concentration, size, and morphology evolution of polystyrene NPs in seawater under simulated sunlight over a time course of 29 days. Aggregation was found to be a continuous process that occurred constantly and was markedly promoted by light irradiation. Moreover, the occurrence of NP swelling, fragmentation, and polymer leaching was evidenced by both transmission electron microscopy and scanning electron microscopy techniques. The statistical results of different transformation types suggested that swelling induces fragmentation and polymer leakage and that light irradiation plays a positive but not decisive role in this transformation. The observation of fragmentation and polymer leakage of poly(methyl methacrylate) and poly(vinyl chloride) NPs suggests that these transformation processes are general for NPs of different polymer types. Facilitated by the increase of surface functional groups, the ions in seawater could penetrate into NPs and then stretch the polymer structure, leading to the swelling phenomenon and other transformations.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Microplásticos , Polímeros , Agua de Mar/química , Poliestirenos , Contaminantes Químicos del Agua/análisis
4.
J Chromatogr A ; 1682: 463503, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36152483

RESUMEN

Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) has been widely used for the detection of micro- and nanoplastics (MNPs) in the environment. However, there is a lack of thorough investigation on the effects of pyrolysis temperature and time, as well as the particle source, size and mass of MNPs on the pyrolysis efficiency and pyrolysis product distribution of MNPs. Herein, taking the common plastics polystyrene (PS) as a model, we systematically evaluated the influences of the above factors on the pyrolysis of PS MNPs. Results showed that pyrolysis temperature and time significantly affect the pyrolysis efficiency. By measuring the relative response values of the indicator compound styrene trimers to styrene monomer, the optimum condition was determined as the temperature of 510 â„ƒ and pyrolysis time longer than 18 s. Meanwhile, the mass of MNPs also affected the distribution of PS pyrolysis products. The proportions of styrene dimers and trimers increased slightly with PS MNP mass, while the source, particle size of MNPs have little effect on the pyrolysis product distribution. This work proposed a suitable pyrolysis temperature and time for the determination of PS by Py-GC/MS, which would contribute to the accurate analysis of PS MNPs in the environment.


Asunto(s)
Poliestirenos , Pirólisis , Calefacción , Microplásticos , Poliestirenos/química , Temperatura
5.
Anal Bioanal Chem ; 414(18): 5529-5536, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35212781

RESUMEN

Quantification of Cd2+ release from Cd-containing quantum dots (QDs) is of fundamental importance to elucidate its toxicity to organisms, but remains a great challenge due to the lack of appropriate analytical method. Herein, a facile method based on size exclusion chromatography (SEC) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for separating and quantifying the QDs and counterpart ions. By using the mixture of sodium dodecyl sulfate (SDS) and ethylenediaminetetraacetic acid tetrasodium salt (EDTA) as the mobile phase, the defect of QD and ion adsorption onto the SEC column was overcome, thus realizing the accurate quantification of ionic species. Besides, the concentration of QDs was achieved through subtracting the ion concentration from the total concentration. Selecting CdSe@ZnS as the typical QDs, the Cd2+ release process in four typical simulated body fluids, namely, simulated gastric fluid, simulated sweat, Gamble's solution, and artificial lysosomal fluid, was monitored using the developed SEC-ICP-MS method. The media pH is identified as the decisive factor which controls the dissolution of ZnS shells and also the Cd2+ release kinetics and final concentration. Our results suggest that the oral pathway for QD uptake poses the biggest risk to human health.


Asunto(s)
Líquidos Corporales , Compuestos de Cadmio , Puntos Cuánticos , Compuestos de Selenio , Líquidos Corporales/química , Cadmio , Compuestos de Cadmio/química , Cromatografía en Gel , Humanos , Puntos Cuánticos/química , Compuestos de Selenio/química , Sulfuros/química , Compuestos de Zinc/química
6.
Anal Chem ; 93(32): 11184-11190, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34347439

RESUMEN

Determination of particulate black carbon (PBC) in the environment is of great importance but faces a new challenge due to the increasing occurrence of coexisting microplastics (MPs), which are an emerging contaminant with properties very similar to those of PBC and cannot be discriminated in the chemical digestion procedure of the reported PBC analysis method. Herein, a comprehensive method has been developed for accurately determining PBC by digestive elimination of the coexisting MPs and other non-black carbon organic matter. Water samples were filtered with a glass fiber membrane (0.3 µm pore size), and the collected substances with the membrane were subjected to sulfonation with chlorosulfonic acid and Fenton digestion in sequence and then to the total organic carbon analyzer for quantification of PBC. Under the optimized conditions, MPs of various sizes and polymer types were efficiently eliminated (>91.0%), whereas various PBC samples were undigested with recoveries over 91.7% except for the relatively low recovery of 65.6% for the PBC prepared at a low pyrolysis temperature of 400 °C. The feasibility of the proposed method was verified by analysis of real water samples with a spike recovery of 88.6-100.2%. We anticipate that this work will pave an avenue for reliable determination of PBC in the presence of MPs.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Carbono , Monitoreo del Ambiente , Plásticos , Contaminantes Químicos del Agua/análisis
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 263: 120136, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34273895

RESUMEN

A new kind of nitrogen-doped carbon dots (N-CDs) was synthesized via a simple hydrothermal strategy using humic acid as the carbon source and urea as the nitrogen source. The fluorescence intensity of as-prepared N-CDs was quenched significantly in presence of Cu2+ based on a specific inner filter effect, which could be utilized to construct a selective sensor for monitoring Cu2+ in aqueous samples. The sensor exhibited good linearity over the range of 0.1-2 µM, and high sensitivity with a detection limit of 25 nM. Under the optimal conditions, there was no significant interference by other metal ions such as Cd2+, Al3+, Cr3+, Fe3+, Pb2+, Na+, Ni+, Fe2+, Ba2+, Ca2+, Co2+, Mg2+, As3+, K+, Zn2+ for Cu2+ detecting except Hg2+.The interference of Hg2+ can be masked by addition of sodium chloride. The experimental results demonstrated that the prepared N-CDs owned strong fluorescence, high monodispersity, good stability and good water solubility, and the constructed sensor had many advances and great application prospect in environmental field.


Asunto(s)
Carbono , Puntos Cuánticos , Sustancias Húmicas , Nitrógeno , Espectrometría de Fluorescencia , Urea
8.
Talanta ; 233: 122498, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34215116

RESUMEN

Carbon dots have been a promising nano-carbon material with many advantages, and attracted many more attentions. This study designed a new chemosensor integrating the strong fluorescent property of carbon dots and the magnetism of amino-functionalized magnetic core-shell nanomaterial, Fe@SiO2-NH2 for determination of 2,4,6-trinitrotoluene (TNT). In this system, fluorescent carbon dots interacted with amino groups on the surface of amino-functionalized magnetic core-shell nanomaterial leading to fluorescence quenching of carbon dots, appearance of TNT competitively replaced of carbon dots on the surface of the magnetic material through forming a Meisenheimer complex. This sensor exhibits excellent selectivity and sensitivity for TNT, and which provided a good dynamic linear range for TNT from 10 to 2000 ng mL-1. The experiments demonstrate a low detection limit of 2.15 ng mL-1. The intra-day precisions for 25, 100 and 500 ng mL-1 were 4.6, 2.3 and 0.5% (RSD, n = 6), inter-day precisions for 25, 100 and 500 ng mL-1 were 4.2, 2.5 and 0.9% (RSD, n = 6), respectively. The developed sensor was validated with river water, dust, and soil samples, and the achieved spiked recoveries were immensely satisfied from 98.1% to 102.0%. The Fe@SiO2-NH2 possessed excellent reusability. This sensor exhibits that it is simple, sensitive and selective, and will be a vital analytical tool for TNT in many fields.


Asunto(s)
Nanoestructuras , Puntos Cuánticos , Trinitrotolueno , Carbono , Límite de Detección , Dióxido de Silicio
9.
Chemosphere ; 282: 131127, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34119727

RESUMEN

4-Carboxyphenylboronic acid was used as the single precursor to facilely prepare fluorescent carbon quantum dots by one-step solvothermal method. The as-obtained carbon dots (CDs) exhibited highly selective and sensitive for benzo[a]pyrene (BaP), and may be a splendid sensor for sensing BaP. The principle was that the as-prepared CDs could form a complex with BaP through hydrophobic interaction which causes the decrease of fluorescence intensity of CDs by static quenching principle. The constructed fluorescent sensor exhibited excellent linearity ranged from 0.002 to 0.06 µg mL-1 and provided a low limit of detection of 0.16 ng mL-1. The experimental results showed that this fluorescent sensor resulted in simplicity, rapidness, low cost, short analytical time, and high sensitivity and stability. Validation with real water samples endowed the sensor high reliability and feasibility for BaP determination in practical application in various samples.


Asunto(s)
Carbono , Puntos Cuánticos , Benzo(a)pireno , Fluorescencia , Colorantes Fluorescentes , Reproducibilidad de los Resultados , Espectrometría de Fluorescencia , Agua
10.
J Environ Sci (China) ; 102: 64-73, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33637266

RESUMEN

Organochlorine pesticides (OCPs) have received much attention due to their toxicity. Reliable methods to monitor their residues in the environment are needed. Here, magnetic polyamidoamine dendrimers were prepared by co-precipitation, Michael addition, and amidation. The magnetic polyamidoamine dendrimers demonstrated good adsorption ability for OCPs-this feature was utilized to construct a sensitive tool for monitoring OCPs in water samples. The proposed method provided remarkable linearity from 0.1 to 500 µg/L and satisfactory limits of detection from 0.012 to 0.029 µg/L. The spiked recoveries of the four target analytes were 91.8%-103.5% with relative standard deviations less than 4.5%. The magnetic materials had good reusability. The results indicated that the resulting method was an efficient, easy, rapid, economical, and eco-friendly tool for monitoring OCPs in aqueous samples.


Asunto(s)
Dendrímeros , Hidrocarburos Clorados , Plaguicidas , Contaminantes Químicos del Agua , Cromatografía Líquida de Alta Presión , Hidrocarburos Clorados/análisis , Fenómenos Magnéticos , Plaguicidas/análisis , Poliaminas , Agua , Contaminantes Químicos del Agua/análisis
11.
J Chromatogr A ; 1639: 461921, 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33524931

RESUMEN

Present study described a sensitive and efficient method for determination of heterocyclic aromatic hydrocarbons using multiwalled carbon nanotubes modified magnetic polyamido-amine dendrimers (MNPs@PAMAM-Gn@MWCNTs) as adsorbent for magnetic solid-phase extraction (MSPE) coupled with gas chromatography-triple quadrupole mass spectrometer (GC-MS/MS). Some pivotal parameters including PAMAM generation, adsorbent dosage, adsorption time, elution time and volume, pH and humic acid concentration were investigated to achieve the best adsorption efficiencies. Under the optimal conditions, 7-methylquinoline, dibenzothiophene and carbazole had good linearity in the concentration range of 0.005-20 µg L - 1, 9-methylcarbazole, 4-methyldibenzothiophene and 4,6-dimethyl dibenzothiophene had good linearity in the concentration range of 0.001-20 µg L - 1. All the correlation coefficients were higher than 0.996. The detection limits of the targets were in the range of 2.2 × 10-4-1.8 × 10-3 µg L - 1 with precisions less than 8.28% (n = 6). The enrichment factors were in the range of 141-147. The spiked recoveries were in the range of 87.0%-115.1% (n = 3). These results indicated that the method could be a reliable alternative tool for monitoring trace heterocyclic aromatic hydrocarbons in environmental water samples.


Asunto(s)
Aminas/química , Dendrímeros/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Fenómenos Magnéticos , Nanotubos de Carbono/química , Nylons/química , Hidrocarburos Policíclicos Aromáticos/análisis , Extracción en Fase Sólida/métodos , Adsorción , Nanotubos de Carbono/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis , Difracción de Rayos X
12.
Talanta ; 224: 121884, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33379093

RESUMEN

Polyamidoamine dendrimer decorated Fe3O4 magnetic nanoparticles was synthesized and grafted with 4-mercaptobenzoic acid (4-MBA). The resulting material was utilized to develop an effective magnetic solid phase extraction method in combination with high performance liquid chromatography for trace determination of polycyclic aromatic hydrocarbons including phenanthrene (PHE), anthracene (ANT), fluoranthene (FLT), pyrene (PYR) and benzo(a)pyrene (BaP). The MNPs@G3.0@4-MBA exhibited to be an efficient extracting medium due to the existence of terminal benzene ring groups, the internal pores, and strong hydrophobic interactions and π-π interactions. The experiments demonstrated that the proposed method possessed excellent linearity in the concentration range of 0.1-300 µg L-1 with correlation coefficients (R) larger than 0.997, and the limits of detection (LODs, S/N = 3) according to the ratio of signal to noise equal to three of PHE, ANT, FLT, PYR and BaP were 0.014 µg L-1, 0.032 µg L-1, 0.055 µg L-1, 0.027 µg L-1 and 0.039 µg L-1, respectively. The proposed method was applied to real water samples and the spiked recoveries were over the range of 92-99%. The results showed that the method earned good repeatability and high sensitivity, and the as-prepared materials were stable and reusable, which displayed that the proposed method would have a wonderful application prospect.

13.
Sci Total Environ ; 720: 137680, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32325600

RESUMEN

2,4,6-Trinitrophenol (TNP) has absorbed much concerns because of its toxic effect and threat on the environment, which results from the fact that it is an important and universal reagent widely utilized for manufacturing many products. It is of great necessity to explore facile and efficient methods for monitoring TNP. In present study, carbon dots (CDs), a new carbonaceous nanomaterial with strong fluorescence, was applied to build a novel sensor for highly sensitive and selective detection of TNP. In the sensing procedure, the fluorescence intensity of as-prepared CDs was diminished with the presence of TNP due to inner filter effect (IFE) quenching mechanism. The sensitivity of the fluorescent sensor was very high with limit of detection down to 5.37 ng mL-1. This fluorescent sensor was evaluated and excellent spiked recoveries were gained, which demonstrated that the developed sensor would be a robust tool for environmental applications.

14.
Chemosphere ; 252: 126468, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32197178

RESUMEN

An ordered g-C3N4- and polyaniline-modified titanium oxide nanotube array (g-C3N4- and PANI-co-modified TiO2 NTAs) was successfully synthesized and used as a photocatalyst. Polyaniline (PANI) was coated onto TiO2 NTAs by electrochemical polycondensation, and g-C3N4 was deposited via the soaking adsorption method. The photocatalysts were examined by several technologies. The experiments demonstrated that the amount of g-C3N4 and PANI, as well as the initial pH value, had significant effects on the photocatalytic efficiency. The resulting photocatalysts exhibited high visible light photocatalytic ability for tetrabromobisphenol A (TBBPA) for two reasons. First, PANI expanded the light absorption into the visible region. Second, rapid and efficient separation of photoinduced charges from the photogenerated potential difference were produced at the contact interface of g-C3N4 and PANI-co-modified TiO2 NTAs. The •OH, [Formula: see text] and h+ were dominant components for the photocatalytic degradation of TBBPA. In addition, the g-C3N4 and PANI-co-modified TiO2 NTAs have excellent long-term stability.


Asunto(s)
Nanotubos/química , Bifenilos Polibrominados/química , Titanio/química , Adsorción , Compuestos de Anilina , Catálisis , Luz , Procesos Fotoquímicos
15.
Talanta ; 206: 120213, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31514887

RESUMEN

Phthalate esters (PAEs) are an important kind of environmental endocrine disrupting chemicals, and have attracted great attention in environmental field. Present study described a new method for rapid and sensitive determination of PAEs including dibenzyl phthalate (DPhP), dibutyl phthalate (DnPP), and dicyclohexyl phthalate (DCHP) from aqueous matrices based on magnetic solid-phase extraction. Polyamidoamine (PAMAM) dendrimers-grafted magnetic-nanoparticles were synthesized and characterized, and the expected integration of more multifunctional sites of PAMAM dendrimers and rapid separation property was utilized for method development. To achieve the best extraction efficiency, several important parameters were optimized including the dosage of the adsorbent, sample pH, kind and volume of eluent, extraction time, desorption time, ionic strength. Under the optimal conditions, three phthalate esters were well enriched and simultaneously determined by high performance liquid chromatography with variable wavelength detector (VWD). Excellent linearities were observed in the range of 0.1-600 µg L-1 for DPhP and DnPP and 0.5-600 µg L-1 for DCHP, and all correlation coefficients (R2) were larger than 0.997. The limits of detection (LODs, S/N = 3) were ranged from 0.025 to 0.16 µg L-1. The spiked recoveries of PAEs in real water samples were in the range of 93.5-101.8% with satisfied relative standard deviations (RSDs) ranging from 0.9 to 4.1%. The prepared magnetic materials have shown good adsorption capability for PAEs and the developed method earned merits such as high sensitivity, simplicity, rapidness and environmental friendliness, which can be used as a robust alternative tool for monitoring PAEs in water samples.


Asunto(s)
Dendrímeros/química , Ésteres/análisis , Nanopartículas de Magnetita/química , Ácidos Ftálicos/análisis , Contaminantes Químicos del Agua/análisis , Cromatografía Líquida de Alta Presión/métodos , Dibutil Ftalato/análisis , Lagos/análisis , Límite de Detección , Océanos y Mares , Extracción en Fase Sólida/métodos
16.
Chemosphere ; 238: 124621, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31454740

RESUMEN

Present study prepared a new magnetic and thermo dual-responsive core-shell nanomaterial (Fe@SiO2@poly(N-isopropylacrymide-co-methacrylic acid, Fe@SiO2@PNIPAM-co-MAA), which was characterized by transmission electron microscopy and X-ray diffraction techniques. The new nanomaterials integrated with the magnetism of nanoscale zero valent iron material and thermo-response of the copolymers, and were utilized to investigate the adsorption capacity for typical phenols such as bisphenol A, phenol and hydroquinone from water samples, and the results showed that the magnetic and thermo dual-responsive core-shell nanomaterial exhibited good adsorption ability to typical phenols. Based on these, a sensitive method was developed for the determination of bisphenol A, phenol and hydroquinone using as-prepared magnetic nanoparticles as the magnetic solid phase extraction sorbent prior to high performance liquid chromatography coupled with variable wavelength detection. Under the optimal conditions, linear linearity was obtained over the range of 0.1-500 µg L-1 with the correlation coefficients (r2) above 0.996. The detection limits of three analytes were in the range of 0.019-0.031 µg L-1, and the precisions were all less than 4.8% (n = 6). The developed method was evaluated with real water samples and excellent spiked recoveries in the range of 94.0-105.4% were achieved. These results indicated that the proposed method was a robust analytical tool and a useful alternative for routine analysis of such pollutants.


Asunto(s)
Compuestos de Bencidrilo/aislamiento & purificación , Hidroquinonas/aislamiento & purificación , Magnetismo , Nanoestructuras/química , Fenol/aislamiento & purificación , Fenoles/aislamiento & purificación , Extracción en Fase Sólida/métodos , Contaminantes Químicos del Agua/aislamiento & purificación , Compuestos de Bencidrilo/análisis , Hidroquinonas/análisis , Fenol/análisis , Fenoles/análisis , Temperatura , Contaminantes Químicos del Agua/análisis
17.
J Hazard Mater ; 386: 121658, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31740318

RESUMEN

In present study, a sensitive and efficient method based on magnetic PAMAM dendrimers as the sorbents for magnetic solid-phase extraction (MSPE) coupled with high performance liquid-phase chromatography and ultraviolet variable wavelength detector (HPLC-VWD) was developed for simultaneous determination of trace cadmium and mercury ions. Sodium diethyldithiocarbamate (DDTC-Na) was used as the chelating agent during the elution process. Parameters that would affect the extraction efficiency including PAMAM generation, adsorbent dosage, adsorption time, elution time and volume, pH and coexisting ions were investigated to achieve the best adsorption efficiency. Under the optimal conditions, good linear relationship was obtained in the range of 0.05-200 µg L-1 for Cd2+ and 0.1-200 µg L-1 for Hg2+, and the limits of detection were 0.016 and 0.040 µg L-1, respectively. The spiked recoveries of Cd2+ and Hg2+ were satisfied in the range of 91.5-105% (n = 3). The proposed method was proved to be an alternative and reliable method to determine trace Cd2+ and Hg2+ in water samples.

18.
Ecotoxicol Environ Saf ; 182: 109472, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31352210

RESUMEN

In present study, reductive graphene oxide and silver nanoparticles co-comodified TiO2 nanotube arrays were prepared, and which was investigated to degrade tetrabromobisphenol A. The arrays co-modified with silver nanoparticles and reductive graphene oxide prepared by electrodeposition method exhibited good photoelectrocatalytic degradative activity for tetrabromobisphenol A, and the degradation efficiency reached 99.6% within 80 min. The synergistic effect of high photoresponse of Ag nanoparticles with their high capture ability for photogenerated electrons and the extended wavelength absorption range of reductive graphene oxide resulted in the highest degradation efficiencies. Degradation is postulated to follow a stepwise reductive debromination mechanism.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Grafito/química , Nanotubos/química , Bifenilos Polibrominados/análisis , Plata/química , Luz Solar , Titanio/química , Catálisis , Electrodos , Oxidación-Reducción , Fotólisis , Bifenilos Polibrominados/efectos de la radiación
19.
J Colloid Interface Sci ; 539: 361-369, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30594011

RESUMEN

Polyamidoamine dendrimer decorated Fe3O4 magnetic nanoparticles were successfully synthesized by Michael addition with methyl acrylate and amidation with ethylenediamine. The decorated magnetic particles were utilized as an effective adsorbent for magnetic solid-phase extraction of tetrabromobisphenol A and 4-nonylphenol at trace levels from environmental water samples. A number of parameters such as generation number, ionic strength, adsorbent dosage, eluent, adsorption time, elution volume, elution time, pH, humic acid and sample volume were optimized. Under the optimal conditions, a wide linearity was achieved in the range of 0.1-500 µg L-1 of the analytes with the correlation coefficients (R2) of 0.9985-0.9995. The limits of detection were approximately 0.011 µg L-1 of tetrabromobisphenol A and 0.017 µg L-1 of 4-nonylphenol. Satisfactory average recoveries of the analytes ranged from 93.2% to 101.1%. The results indicated that the decorated magnetic nanoparticles can be suitable for extraction of phenols from environmental water samples. The proposed method was sensitive, effective, practical and robust for the determination of tetrabromobisphenol A and 4-nonylphenol in environmental water samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA