Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 19(8): e1010863, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37616321

RESUMEN

Quantitative traits may be controlled by many loci, many alleles at each locus, and subject to genotype-by-environment interactions, making them difficult to map. One example of such a complex trait is shoot branching in the model plant Arabidopsis, and its plasticity in response to nitrate. Here, we use artificial selection under contrasting nitrate supplies to dissect the genetic architecture of this complex trait, where loci identified by association mapping failed to explain heritability estimates. We found a consistent response to selection for high branching, with correlated responses in other traits such as plasticity and flowering time. Genome-wide scans for selection and simulations suggest that at least tens of loci control this trait, with a distinct genetic architecture between low and high nitrate treatments. While signals of selection could be detected in the populations selected for high branching on low nitrate, there was very little overlap in the regions selected in three independent populations. Thus the regulatory network controlling shoot branching can be tuned in different ways to give similar phenotypes.


Asunto(s)
Arabidopsis , Nitratos , Alelos , Genotipo , Herencia Multifactorial
2.
Mol Plant Microbe Interact ; 36(6): 315-322, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36734982

RESUMEN

The oomycete Phytophthora palmivora infects a wide range of tropical crops worldwide. Like other filamentous plant pathogens, it secretes effectors to colonize plant tissues. Here, we characterize FIRE, an RXLR effector that contains a canonical mode I 14-3-3 phospho-sensor-binding motif that is conserved in effectors of several Phytophthora species. FIRE is phosphorylated in planta and interacts with multiple 14-3-3 proteins. Binding is sensitive to the R18 14-3-3 inhibitor. FIRE promotes plant susceptibility and co-localizes with its target around haustoria. This work uncovers a new type of oomycete effector target mechanism. It demonstrates that substrate mimicry for 14-3-3 proteins is a cross-kingdom effector strategy used by both prokaryotic and eukaryotic plant pathogens to suppress host immunity. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Phytophthora , Proteínas 14-3-3 , Plantas , Enfermedades de las Plantas
3.
New Phytol ; 232(5): 2207-2219, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34449891

RESUMEN

Soil fungi establish mutualistic interactions with the roots of most vascular land plants. Arbuscular mycorrhizal (AM) fungi are among the most extensively characterised mycobionts to date. Current approaches to quantifying the extent of root colonisation and the abundance of hyphal structures in mutant roots rely on staining and human scoring involving simple yet repetitive tasks which are prone to variation between experimenters. We developed Automatic Mycorrhiza Finder (AMFinder) which allows for automatic computer vision-based identification and quantification of AM fungal colonisation and intraradical hyphal structures on ink-stained root images using convolutional neural networks. AMFinder delivered high-confidence predictions on image datasets of roots of multiple plant hosts (Nicotiana benthamiana, Medicago truncatula, Lotus japonicus, Oryza sativa) and captured the altered colonisation in ram1-1, str, and smax1 mutants. A streamlined protocol for sample preparation and imaging allowed us to quantify mycobionts from the genera Rhizophagus, Claroideoglomus, Rhizoglomus and Funneliformis via flatbed scanning or digital microscopy, including dynamic increases in colonisation in whole root systems over time. AMFinder adapts to a wide array of experimental conditions. It enables accurate, reproducible analyses of plant root systems and will support better documentation of AM fungal colonisation analyses. AMFinder can be accessed at https://github.com/SchornacklabSLCU/amfinder.


Asunto(s)
Aprendizaje Profundo , Glomeromycota , Lotus , Micorrizas , Hongos , Raíces de Plantas , Simbiosis
4.
BMC Microbiol ; 19(1): 265, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31775609

RESUMEN

BACKGROUND: Oomycetes are pathogens of mammals, fish, insects and plants, and the potato late blight agent Phytophthora infestans and the oil palm and cocoa infecting pathogen Phytophthora palmivora cause economically impacting diseases on a wide range of crop plants. Increasing genomic and transcriptomic resources and recent advances in oomycete biology demand new strategies for genetic modification of oomycetes. Most oomycete transformation procedures rely on geneticin-based selection of transgenic strains. RESULTS: We established N-acetyltransferase AAC(3)-I as a gentamicin-based selectable marker for oomycete transformation without interference with existing geneticin resistance. Strains carrying gentamicin resistance are fully infectious in plants. We further demonstrate the usefulness of this new antibiotic selection to super-transform well-characterized, already fluorescently-labelled P. palmivora strains and provide a comprehensive protocol for maintenance and zoospore electro-transformation of Phytophthora strains to aid in plant-pathogen research. CONCLUSIONS: N-acetyltransferase AAC(3)-I is functional in Phytophthora oomycetes. In addition, the substrate specificity of the AAC(3)-I enzyme allows for re-transformation of geneticin-resistant strains. Our findings and resources widen the possibilities to study oomycete cell biology and plant-oomycete interactions.


Asunto(s)
Arilamina N-Acetiltransferasa/genética , Resistencia a Medicamentos/genética , Gentamicinas/farmacología , Isoenzimas/genética , Phytophthora infestans/efectos de los fármacos , Phytophthora/efectos de los fármacos , Colorantes Fluorescentes , Phytophthora/enzimología , Phytophthora/genética , Phytophthora infestans/enzimología , Phytophthora infestans/genética , Enfermedades de las Plantas , Transformación Genética
5.
mBio ; 10(5)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575765

RESUMEN

Multinucleate fungi and oomycetes are phylogenetically distant but structurally similar. To address whether they share similar nuclear dynamics, we carried out time-lapse imaging of fluorescently labeled Phytophthora palmivora nuclei. Nuclei underwent coordinated bidirectional movements during plant infection. Within hyphal networks growing in planta or in axenic culture, nuclei either are dragged passively with the cytoplasm or actively become rerouted toward nucleus-depleted hyphal sections and often display a very stretched shape. Benomyl-induced depolymerization of microtubules reduced active movements and the occurrence of stretched nuclei. A centrosome protein localized at the leading end of stretched nuclei, suggesting that, as in fungi, astral microtubule-guided movements contribute to nuclear distribution within oomycete hyphae. The remarkable hydrodynamic shape adaptations of Phytophthora nuclei contrast with those in fungi and likely enable them to migrate over longer distances. Therefore, our work summarizes mechanisms which enable a near-equal nuclear distribution in an oomycete. We provide a basis for computational modeling of hydrodynamic nuclear deformation within branched tubular networks.IMPORTANCE Despite their fungal morphology, oomycetes constitute a distinct group of protists related to brown algae and diatoms. Many oomycetes are pathogens and cause diseases of plants, insects, mammals, and humans. Extensive efforts have been made to understand the molecular basis of oomycete infection, but durable protection against these pathogens is yet to be achieved. We use a plant-pathogenic oomycete to decipher a key physiological aspect of oomycete growth and infection. We show that oomycete nuclei travel actively and over long distances within hyphae and during infection. Such movements require microtubules anchored on the centrosome. Nuclei hydrodynamically adapt their shape to travel in or against the flow. In contrast, fungi lack a centrosome and have much less flexible nuclei. Our findings provide a basis for modeling of flexible nuclear shapes in branched hyphal networks and may help in finding hard-to-evade targets to develop specific antioomycete strategies and achieve durable crop disease protection.


Asunto(s)
Phytophthora/fisiología , Núcleo Celular/metabolismo , Centrosoma , Biología Computacional , Hifa/citología , Hifa/crecimiento & desarrollo , Movimiento , Phytophthora/citología , Phytophthora/crecimiento & desarrollo
6.
PLoS One ; 14(7): e0220184, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31356604

RESUMEN

Plasmopara viticola is a biotrophic oomycete pathogen causing grapevine downy mildew. We characterized the repertoire of P. viticola effector proteins which may be translocated into plants to support the disease. We found several secreted proteins that contain canonical dEER motifs and conserved WY-domains but lack the characteristic RXLR motif reported previously from oomycete effectors. We cloned four candidates and showed that one of them, Pv33, induces plant cell death in grapevine and Nicotiana species. This activity is dependent on the nuclear localization of the protein. Sequence similar effectors were present in seven European, but in none of the tested American isolates. Together our work contributes a new type of conserved P. viticola effector candidates.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Nicotiana/microbiología , Peronospora/aislamiento & purificación , Vitis/microbiología , Muerte Celular , Núcleo Celular/metabolismo , Clonación Molecular , Europa (Continente) , Evolución Molecular , Proteínas Fúngicas/química , Interacciones Huésped-Patógeno , Peronospora/clasificación , Peronospora/metabolismo , Filogenia , Enfermedades de las Plantas/microbiología , Dominios Proteicos , Análisis de Secuencia de Proteína , Especificidad de la Especie , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...