Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(3): e0298437, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38498459

RESUMEN

Ionizing radiation (IR) and oncolytic viruses are both used to treat cancer, and the effectiveness of both agents depends upon stimulating an immune response against the tumor. In this study we tested whether combining image guided ionizing radiation (IG-IR) with an oncolytic vaccinia virus (VACV) could yield a better therapeutic response than either treatment alone. ΔF4LΔJ2R VACV grew well on irradiated human and mouse breast cancer cells, and the virus can be combined with 4 or 8 Gy of IR to kill cells in an additive or weakly synergistic manner. To test efficacy in vivo we used immune competent mice bearing orthotopic TUBO mammary tumors. IG-IR worked well with 10 Gy producing 80% complete responses, but this was halved when the tumors were treated with VACV starting 2 days after IG-IR. VACV monotherapy was ineffective in this model. The antagonism was time dependent as waiting for 21 days after IG-IR eliminated the inhibitory effect but without yielding any further benefits over IR alone. In irradiated tumors, VACV replication was also lower, suggesting that irradiation created an environment that did not support infection as well in vivo as in vitro. A study of how four different treatment regimens affected the immune composition of the tumor microenvironment showed that treating irradiated tumors with VACV altered the immunological profiles in tumors exposed to IR or VACV alone. We detected more PD-1 and PD-L1 expression in tumors exposed to IR+VACV but adding an αPD-1 antibody to the protocol did not change the way VACV interferes with IG-IR therapy. VACV encodes many immunosuppressive gene products that may interfere with the ability of radiotherapy to induce an effective anti-tumor immune response through the release of danger-associated molecular patterns. These data suggest that infecting irradiated tumors with VACV, too soon after exposure, may interfere in the innate and linked adaptive immune responses that are triggered by radiotherapy to achieve a beneficial impact.


Asunto(s)
Neoplasias Mamarias Animales , Viroterapia Oncolítica , Virus Oncolíticos , Radioterapia Guiada por Imagen , Vaccinia , Humanos , Animales , Ratones , Virus Vaccinia/genética , Virus Oncolíticos/genética , Neoplasias Mamarias Animales/radioterapia , Inmunoterapia , Viroterapia Oncolítica/métodos , Microambiente Tumoral
2.
PLoS Pathog ; 18(3): e1010392, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35290406

RESUMEN

Poxvirus genomes consist of a linear duplex DNA that ends in short inverted and complementary hairpin structures. These elements also encode loops and mismatches that likely serve a role in genome packaging and perhaps replication. We constructed mutant vaccinia viruses (VACV) where the native hairpins were replaced by altered forms and tested effects on replication, assembly, and virulence. Our studies showed that structure, not sequence, likely determines function as one can replace an Orthopoxvirus (VACV) hairpin with one copied from a Leporipoxvirus with no effect on growth. Some loops can be deleted from VACV hairpins with little effect, but VACV bearing too few mismatches grew poorly and we couldn't recover viruses lacking all mismatches. Further studies were conducted using a mutant bearing only one of six mismatches found in wild-type hairpins (SΔ1Δ3-6). This virus grew to ~20-fold lower titers, but neither DNA synthesis nor telomere resolution was affected. However, the mutant exhibited a particle-to-PFU ratio 10-20-fold higher than wild-type viruses and p4b/4b core protein processing was compromised, indicating an assembly defect. Electron microscopy showed that SΔ1Δ3-6 mutant development was blocked at the immature virus (IV) stage, which phenocopies known effects of I1L mutants. Competitive DNA binding assays showed that recombinant I1 protein had less affinity for the SΔ1Δ3-6 hairpin than the wild-type hairpin. The SΔ1Δ3-6 mutant was also attenuated when administered to SCID-NCR mice by tail scarification. Mice inoculated with viruses bearing wild-type hairpins exhibited a median survival of 30-37 days, while mice infected with SΔ1Δ3-6 virus survived >70 days. Persistent infections favor genetic reversion and genome sequencing detected one example where a small duplication near the hairpin tip likely created a new loop. These observations show that mismatches serve a critical role in genome packaging and provide new insights into how VACV "flip and flop" telomeres are arranged.


Asunto(s)
Nucleótidos , Virus Vaccinia , Animales , ADN , Ratones , Ratones SCID , Telómero , Virus Vaccinia/genética , Virión/genética , Replicación Viral/genética
3.
iScience ; 24(6): 102619, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34159300

RESUMEN

Despite the remarkable success of chimeric antigen receptor (CAR)-T cells against hematologic malignancies, severe off-tumor effects have constrained their use against solid tumors. Recently, CAR-engineered natural killer (NK) cells have emerged as an effective and safe alternative. Here, we demonstrate that HER2 CAR-expression in NK cells from healthy donors and patients with breast cancer potently enhances their anti-tumor functions against various HER2-expressing cancer cells, regardless of MHC class I expression. Moreover, HER2 CAR-NK cells exert higher cytotoxicity than donor-matched HER2 CAR-T cells against tumor targets. Importantly, unlike CAR-T cells, HER2 CAR-NK cells do not elicit enhanced cytotoxicity or inflammatory cytokine production against non-malignant human lung epithelial cells with basal HER2 expression. Further, HER2 CAR-NK cells maintain high cytotoxic function in the presence of immunosuppressive factors enriched in solid tumors. These results show that CAR-NK cells may be a highly potent and safe source of immunotherapy in the context of solid tumors.

4.
Cancer Immunol Res ; 8(5): 618-631, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32127390

RESUMEN

Vaccinia virus (VACV) is a double-stranded DNA virus that devotes a large portion of its 200 kbp genome to suppressing and manipulating the immune response of its host. Here, we investigated how targeted removal of immunomodulatory genes from the VACV genome impacted immune cells in the tumor microenvironment with the intention of improving the therapeutic efficacy of VACV in breast cancer. We performed a head-to-head comparison of six mutant oncolytic VACVs, each harboring deletions in genes that modulate different cellular pathways, such as nucleotide metabolism, apoptosis, inflammation, and chemokine and interferon signaling. We found that even minor changes to the VACV genome can impact the immune cell compartment in the tumor microenvironment. Viral genome modifications had the capacity to alter lymphocytic and myeloid cell compositions in tumors and spleens, PD-1 expression, and the percentages of virus-targeted and tumor-targeted CD8+ T cells. We observed that while some gene deletions improved responses in the nonimmunogenic 4T1 tumor model, very little therapeutic improvement was seen in the immunogenic HER2/neu TuBo model with the various genome modifications. We observed that the most promising candidate genes for deletion were those that interfere with interferon signaling. Collectively, this research helped focus attention on the pathways that modulate the immune response in the context of VACV oncolytic virotherapy. They also suggest that the greatest benefits to be obtained with these treatments may not always be seen in "hot tumors."


Asunto(s)
Neoplasias de la Mama/inmunología , Linfocitos T CD8-positivos/inmunología , Inmunomodulación , Viroterapia Oncolítica/métodos , Virus Oncolíticos/inmunología , Microambiente Tumoral/inmunología , Virus Vaccinia/inmunología , Animales , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Femenino , Ratones , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto
5.
PLoS One ; 15(1): e0228028, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31945138

RESUMEN

Poxviruses replicate in cytoplasmic structures called factories and each factory begins as a single infecting particle. Sixty-years ago Cairns predicted that this might have effects on vaccinia virus (VACV) recombination because the factories would have to collide and mix their contents to permit recombination. We've since shown that factories collide irregularly and that even then the viroplasm mixes poorly. We've also observed that while intragenic recombination occurs frequently early in infection, intergenic recombination is less efficient and happens late in infection. Something inhibits factory fusion and viroplasm mixing but what is unclear. To study this, we've used optical and electron microscopy to track factory movement in co-infected cells and correlate these observations with virus development and recombinant formation. While the technical complexity of the experiments limited the number of cells that are amenable to extensive statistical analysis, these studies do show that intergenic recombination coincides with virion assembly and when VACV replication has declined to ≤10% of earlier levels. Along the boundaries between colliding factories, one sees ER membrane remnants and other cell constituents like mitochondria. These collisions don't always cause factory fusion, but when factories do fuse, they still entrain cell constituents like mitochondria and ER-wrapped microtubules. However, these materials wouldn't seem to pose much of a further barrier to DNA mixing and so it's likely that the viroplasm also presents an omnipresent impediment to DNA mixing. Late packaging reactions might help to disrupt the viroplasm, but packaging would sequester the DNA just as the replication and recombination machinery goes into decline and further reduce recombinant yields. Many factors thus appear to conspire to limit recombination between co-infecting poxviruses.


Asunto(s)
Replicación del ADN , ADN Viral/biosíntesis , Recombinación Genética , Virus Vaccinia , Virión/fisiología , Ensamble de Virus , Animales , Línea Celular , Citosol/inmunología , Retículo Endoplásmico/inmunología , Virus Vaccinia/genética , Virus Vaccinia/fisiología
6.
Cancer Immunol Immunother ; 67(4): 575-587, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29299659

RESUMEN

Ovarian cancer (OC) is the leading cause of gynecological cancer-related death in North America. Most ovarian cancer patients (OCPs) experience disease recurrence after first-line surgery and chemotherapy; thus, there is a need for novel second-line treatments to improve the prognosis of OC. Although peripheral blood-derived NK cells are known for their ability to spontaneously lyse tumour cells without prior sensitization, ascites-derived NK cells (ascites-NK cells) isolated from OCPs exhibit inhibitory phenotypes, impaired cytotoxicity and may play a pro-tumourigenic role in cancer progression. Therefore, it is of interest to improve the cytotoxic effector function of impaired OCP ascites-NK cells at the tumour environment. We investigated the efficacy of using an artificial APC-based ex vivo expansion technique to generate cytotoxic, expanded NK cells from previously impaired OCP ascites-NK cells, for use in an autologous model of NK cell immunotherapy. We are the first to obtain a log-scale expansion of OCP ascites-NK cells that upregulate the surface expression of activating receptors NKG2D, NKp30, NKp44, produce robust amounts of anti-tumour cytokines in the presence of OC cells and mediate direct tumour cytotoxicity against ascites-derived, primary OC cells obtained from autologous patients. Our findings demonstrate that it is possible to generate cytotoxic OCP ascites-NK cells from previously impaired OCP ascites-NK cells, which presents a promising immunotherapeutic target for the second-line treatment of OC. Future work should focus on evaluating the in vivo efficacy of autologous NK cell immunotherapy through the intraperitoneal delivery of NK cell expansion factors to a preclinical xenograft mouse model of human OC.


Asunto(s)
Ascitis/inmunología , Citotoxicidad Inmunológica/inmunología , Inmunoterapia , Células Asesinas Naturales/inmunología , Neoplasias Ováricas/inmunología , Ascitis/metabolismo , Proliferación Celular , Citocinas/metabolismo , Femenino , Humanos , Células Asesinas Naturales/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/terapia , Células Tumorales Cultivadas
7.
J Immunother ; 41(2): 64-72, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29189387

RESUMEN

With over 600,000 units of umbilical cord blood (CB) stored on a global scale, it is important to elucidate the therapeutic abilities of this cryopreserved reservoir. In the advancing field of natural killer (NK) cell cancer immunotherapy, CB has proven to be a promising and noninvasive source of therapeutic NK cells. Although studies have proven the clinical efficacy of using long-term cryopreserved CB in the context of hematopoietic stem cell transplantations, little is known about its use for the ex vivo expansion of effector immune cells. Therefore, our group sought to derive ex vivo-expanded NK cells from long-term cryopreserved CB, using an artificial antigen presenting cell-mediated expansion technique. We compared the expansion potential and antitumor effector function of CB-derived NK (CB-NK) cells expanded from fresh (n=4), short-term cryopreserved (<1-year old, n=5), and long-term cryopreserved (1-10-year old, n=5) CB. Here, we demonstrated it is possible to obtain an exponential amount of expanded CB-NK cells from long-term cryopreserved CB. Ex vivo-expanded CB-NK cells had an increased surface expression of activating markers and showed potent antitumor function by producing robust levels of proinflammatory cytokines, interferon-γ, and tumor necrosis factor-α. Moreover, expanded CB-NK cells (n=3-5) demonstrated cytotoxicity towards primary breast cancer cells (n=2) derived from a triple-negative breast cancer and an estrogen receptor-positive/progesterone receptor-positive breast cancer patient. Long-term cryopreservation had no effect on the expansion potential or effector function of expanded CB-NK cells. Therefore, we propose that long-term cryopreserved CB remains clinically useful for the ex vivo expansion of therapeutic NK cells.


Asunto(s)
Neoplasias de la Mama/inmunología , Citotoxicidad Inmunológica , Sangre Fetal/citología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Biomarcadores de Tumor , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Células Cultivadas , Criopreservación , Citocinas/metabolismo , Humanos , Activación de Linfocitos
8.
Sci Rep ; 7(1): 12083, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28935883

RESUMEN

Adoptive immune cell therapy is emerging as a promising immunotherapy for cancer. Particularly, the adoptive transfer of NK cells has garnered attention due to their natural cytotoxicity against tumor cells and safety upon adoptive transfer to patients. Although strategies exist to efficiently generate large quantities of expanded NK cells ex vivo, it remains unknown whether these expanded NK cells can persist and/or proliferate in vivo in the absence of exogenous human cytokines. Here, we have examined the adoptive transfer of ex vivo expanded human cord blood-derived NK cells into humanized mice reconstituted with autologous human cord blood immune cells. We report that ex vivo expanded NK cells are able to survive and possibly proliferate in vivo in humanized mice without exogenous cytokine administration, but not in control mice that lack human immune cells. These findings demonstrate that the presence of autologous human immune cells supports the in vivo survival of ex vivo expanded human NK cells. These results support the application of ex vivo expanded NK cells in cancer immunotherapy and provide a translational humanized mouse model to test the lifespan, safety, and functionality of adoptively transferred cells in the presence of autologous human immune cells prior to clinical use.


Asunto(s)
Traslado Adoptivo/métodos , Proliferación Celular , Citotoxicidad Inmunológica/inmunología , Células Asesinas Naturales/trasplante , Animales , Línea Celular Tumoral , Supervivencia Celular/inmunología , Células Cultivadas , Sangre Fetal/citología , Humanos , Inmunoterapia Adoptiva/métodos , Células K562 , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Ratones Endogámicos NOD , Ratones Noqueados , Neoplasias/inmunología , Neoplasias/terapia
9.
Breast Cancer Res ; 19(1): 76, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28668076

RESUMEN

BACKGROUND: Natural killer (NK) cells play a critical role in cancer immunosurveillance. Recent developments in NK cell ex-vivo expansion makes it possible to generate millions of activated NK cells from a small volume of peripheral blood. We tested the functionality of ex vivo expanded NK cells in vitro against breast cancer cell lines and in vivo using a xenograft mouse model. The study aim was to assess functionality and phenotype of expanded NK cells from breast cancer patients against breast cancer cell lines and autologous primary tumours. METHODS: We used a well-established NK cell co-culture system to expand NK cells ex vivo from healthy donors and breast cancer patients and examined their surface marker expression. Moreover, we tested the ability of expanded NK cells to lyse the triple negative breast cancer and HER2-positive breast cancer cell lines MDA-MB-231 and MDA-MB-453, respectively. We also tested their ability to prevent tumour growth in vivo using a xenograft mouse model. Finally, we tested the cytotoxicity of expanded NK cells against autologous and allogeneic primary breast cancer tumours in vitro. RESULTS: After 3 weeks of culture we observed over 1000-fold expansion of NK cells isolated from either breast cancer patients or healthy donors. We also showed that the phenotype of expanded NK cells is comparable between those from healthy donors and cancer patients. Moreover, our results confirm the ability of ex vivo expanded NK cells to lyse tumour cell lines in vitro. While the cell lines examined had differential sensitivity to NK cell killing we found this was correlated with level of major histocompatibility complex (MHC) class I expression. In our in vivo model, NK cells prevented tumour establishment and growth in immunocompromised mice. Finally, we showed that NK cells expanded from the peripheral blood of breast cancer patients show high cytotoxicity against allogeneic and autologous patient-derived tumour cells in vitro. CONCLUSION: NK cells from breast cancer patients can be expanded similarly to those from healthy donors, have a high cytotoxic ability against breast cancer cell lines and patient-derived tumour cells, and can be compatible with current cancer treatments to restore NK cell function in cancer patients.


Asunto(s)
Neoplasias de la Mama/inmunología , Citotoxicidad Inmunológica , Células Asesinas Naturales/inmunología , Animales , Biomarcadores , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Femenino , Xenoinjertos , Humanos , Inmunofenotipificación , Inmunoterapia Adoptiva , Células Asesinas Naturales/metabolismo , Ratones , Ratones Noqueados , Receptor ErbB-2/metabolismo
10.
J Exp Med ; 214(4): 1153-1167, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28264883

RESUMEN

The requirement of type I interferon (IFN) for natural killer (NK) cell activation in response to viral infection is known, but the underlying mechanism remains unclear. Here, we demonstrate that type I IFN signaling in inflammatory monocytes, but not in dendritic cells (DCs) or NK cells, is essential for NK cell function in response to a mucosal herpes simplex virus type 2 (HSV-2) infection. Mice deficient in type I IFN signaling, Ifnar-/- and Irf9-/- mice, had significantly lower levels of inflammatory monocytes, were deficient in IL-18 production, and lacked NK cell-derived IFN-γ. Depletion of inflammatory monocytes, but not DCs or other myeloid cells, resulted in lower levels of IL-18 and a complete abrogation of NK cell function in HSV-2 infection. Moreover, this resulted in higher susceptibility to HSV-2 infection. Although Il18-/- mice had normal levels of inflammatory monocytes, their NK cells were unresponsive to HSV-2 challenge. This study highlights the importance of type I IFN signaling in inflammatory monocytes and the induction of the early innate antiviral response.


Asunto(s)
Herpes Simple/inmunología , Interferón Tipo I/fisiología , Interleucina-18/fisiología , Células Asesinas Naturales/inmunología , Monocitos/fisiología , Transducción de Señal/fisiología , Animales , Herpesvirus Humano 2/inmunología , Inmunidad Innata , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/fisiología , Interferón gamma/biosíntesis , Interleucina-15/fisiología , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Receptor de Interferón alfa y beta/fisiología
11.
PLoS One ; 12(3): e0173056, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28257484

RESUMEN

It has been well established that many vaccinia virus proteins suppress host antiviral pathways by targeting the transcription of antiviral proteins, thus evading the host innate immune system. However, whether viral proteins have an effect on the host's overall cellular transcription is less understood. In this study we investigated the regulation of heterochromatin during vaccinia virus infection. Heterochromatin is a highly condensed form of chromatin that is less transcriptionally active and characterized by methylation of histone proteins. We examined the change in methylation of two histone proteins, H3 and H4, which are major markers of heterochromatin, during the course of viral infection. Using immunofluorescence microscopy and flow cytometry we were able to track the overall change in the methylated levels of H3K9 and H4K20. Our results suggest that there is significant increase in methylation of H3K9 and H4K20 during Orthopoxviruses infection compared to mock-infected cells. However, this effect was not seen when we infected cells with Leporipoxviruses. We further screened several vaccinia virus single and multi-gene deletion mutant and identified the vaccinia virus gene K7R as a contributor to the increase in cellular histone methylation during infection.


Asunto(s)
Epigénesis Genética , Fibroblastos/virología , Histonas/metabolismo , Virus Vaccinia/genética , Proteínas Virales/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Ensamble y Desensamble de Cromatina , Embrión de Mamíferos , Fibroblastos/metabolismo , Heterocromatina/metabolismo , Heterocromatina/ultraestructura , Histonas/genética , Interacciones Huésped-Patógeno , Humanos , Leporipoxvirus/genética , Leporipoxvirus/metabolismo , Metilación , Microscopía Fluorescente , Mutación , Cultivo Primario de Células , Virus Vaccinia/metabolismo , Proteínas Virales/genética
12.
BMC Immunol ; 17(1): 18, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27307066

RESUMEN

BACKGROUND: Humanized mouse models are an increasingly popular preclinical model to study the human immune response in a biological system. There are a variety of protocols to generate these mice, each differing in the strain of the recipient, source of hematopoietic stem cells, and mode of transplantation. Though there is well-documented reconstitution information regarding the spleen, blood, and bone marrow, there is little information regarding reconstitution of the lymph node and liver. In this report, we sought to compare reconstitution levels in a variety of immunological tissues, including the lymph node and liver, between mice engrafted intravenously as adults and intrahepatically in newborns. RESULTS: CD34+ cells were enriched from cord blood and transplanted intravenously into irradiated adult NOD-Rag1(-/-)IL2rγ(-/-) (NRG) mice or intra-hepatically into irradiated newborn NRG mice. At 9-28 weeks post-engraftment, immunological tissues were processed and analyzed for human lymphoid and myeloid subsets. Adult and newborn engrafted humanized mice were comparable in long-term reconstitution of human CD45 cells and subsequent lymphoid and myeloid subsets in the spleen, bone marrow, thymus, lymph node, and liver. Mice engrafted as newborns had a higher level of T-cells and a lower level of B-cells compared to mice engrafted as adults. We observed significant levels of human immune cell engraftment in both the lymph node and the liver, with a predominant adaptive immune population in both compartments. CONCLUSIONS: Human immune cells repopulate liver and mesenteric lymph nodes of NRG mice and can be used to study the human immune system in the gastrointestinal tract.


Asunto(s)
Envejecimiento/inmunología , Linfocitos B/fisiología , Células Madre Hematopoyéticas/inmunología , Hígado/fisiología , Ganglios Linfáticos/fisiología , Linfocitos T/fisiología , Animales , Animales Recién Nacidos , Antígenos CD34/metabolismo , Autorrenovación de las Células , Supervivencia Celular , Células Cultivadas , Trasplante de Células Madre Hematopoyéticas , Proteínas de Homeodominio/genética , Humanos , Ratones , Ratones Noqueados , Quimera por Trasplante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...