Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Occup Environ Hyg ; 21(8): 564-575, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38913988

RESUMEN

Activated carbon filters are used for the removal of hazardous gases from the air. This research applied vibrational spectroscopy methods, including Fourier-transform infrared spectroscopy and Raman spectroscopy to characterize hydrogen sulfide adsorption on impregnated carbon materials with metals having reactivity toward hydrogen sulfide. The Fourier-transform infrared spectroscopy results demonstrated the formation of a new chemical bond between the impregnating metals and the sulfur, indicated by the appearance of a new band at 618 cm-1. The Raman spectra results showed that for the copper-impregnated activated carbon with the highest hydrogen sulfide adsorption capacity, a new vibrational band at 475 cm-1 evolved, indicating a copper-sulfur bond. In addition, upshifts in the carbon D sub-bands were observed after efficient hydrogen sulfide adsorption, along with a larger area of the approximately 1500 cm-1 band. Therefore, Fourier-transform infrared spectroscopy and Raman spectroscopy combination can potentially indicate H2S adsorption on impregnated activated carbon filters.


Asunto(s)
Carbón Orgánico , Cobre , Sulfuro de Hidrógeno , Espectrometría Raman , Sulfuro de Hidrógeno/química , Adsorción , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectrometría Raman/métodos , Carbón Orgánico/química , Cobre/química , Filtración/métodos , Carbono/química
2.
Int J Mol Sci ; 24(16)2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37629180

RESUMEN

Impregnated activated carbons (IACs) used in air filtration gradually lose their efficacy for the chemisorption of noxious gases when exposed to humidity due to impregnated metal deactivation. In order to stabilize IACs against aging, and to prolong the filters' shelf life, inorganic phosphate compounds (phosphoric acid and its three salts, NaHPO4, Na2HPO4, and Na3PO4) were used as anti-aging additives for two different chromium-free IACs impregnated with copper, zinc, molybdenum, and triethylenediamine (TEDA). Phosphoric acid, monosodium, and disodium phosphate were found to be very efficient in inhibiting the aging of IACs over long periods against cyanogen chloride (the test agent) chemisorption, with the latter being the most efficient. However, the efficiency of phosphate as an anti-aging additive was not well correlated with its ability to inhibit the migration of metal impregnants, especially copper, from the interior to the external surface of carbon granules. Unlike organic additives, the inorganic phosphate additives did not decrease the surface area of the IAC or its physical adsorption capacity for toluene. Using a phosphate additive in IAC used in collective protection and personal filters can improve the safety of the user and the environment and dramatically reduce the need to replace these filters after exposure to humid environments. This has safety, economic, logistical, and environmental advantages.


Asunto(s)
Carbón Orgánico , Gases , Carbón Orgánico/farmacología , Cobre , Fosfatos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA