Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(7): 107070, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37426341

RESUMEN

The enteric nervous system (ENS) regulates many gastrointestinal functions including peristalsis, immune regulation and uptake of nutrients. Defects in the ENS can lead to severe enteric neuropathies such as Hirschsprung disease (HSCR). Zebrafish have proven to be fruitful in the identification of genes involved in ENS development and HSCR pathogenesis. However, composition and specification of enteric neurons and glial subtypes at larval stages, remains mainly unexplored. Here, we performed single cell RNA sequencing of zebrafish ENS at 5 days post-fertilization. We identified vagal neural crest progenitors, Schwann cell precursors, and four clusters of differentiated neurons. In addition, a previously unrecognized elavl3+/phox2bb-population of neurons and cx43+/phox2bb-enteric glia was found. Pseudotime analysis supported binary neurogenic branching of ENS differentiation, driven by a notch-responsive state. Taken together, we provide new insights on ENS development and specification, proving that the zebrafish is a valuable model for the study of congenital enteric neuropathies.

2.
Gastroenterology ; 155(1): 118-129.e6, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29601828

RESUMEN

BACKGROUND & AIMS: Hirschsprung disease (HSCR) is an inherited congenital disorder characterized by absence of enteric ganglia in the distal part of the gut. Variants in ret proto-oncogene (RET) have been associated with up to 50% of familial and 35% of sporadic cases. We searched for variants that affect disease risk in a large, multigenerational family with history of HSCR in a linkage region previously associated with the disease (4q31.3-q32.3) and exome wide. METHODS: We performed exome sequencing analyses of a family in the Netherlands with 5 members diagnosed with HSCR and 2 members diagnosed with functional constipation. We initially focused on variants in genes located in 4q31.3-q32.3; however, we also performed an exome-wide analysis in which known HSCR or HSCR-associated gene variants predicted to be deleterious were prioritized for further analysis. Candidate genes were expressed in HEK293, COS-7, and Neuro-2a cells and analyzed by luciferase and immunoblot assays. Morpholinos were designed to target exons of candidate genes and injected into 1-cell stage zebrafish embryos. Embryos were allowed to develop and stained for enteric neurons. RESULTS: Within the linkage region, we identified 1 putative splice variant in the lipopolysaccharide responsive beige-like anchor protein gene (LRBA). Functional assays could not confirm its predicted effect on messenger RNA splicing or on expression of the mab-21 like 2 gene (MAB21L2), which is embedded in LRBA. Zebrafish that developed following injection of the lrba morpholino had a shortened body axis and subtle gut morphological defects, but no significant reduction in number of enteric neurons compared with controls. Outside the linkage region, members of 1 branch of the family carried a previously unidentified RET variant or an in-frame deletion in the glial cell line derived neurotrophic factor gene (GDNF), which encodes a ligand of RET. This deletion was located 6 base pairs before the last codon. We also found variants in the Indian hedgehog gene (IHH) and its mediator, the transcription factor GLI family zinc finger 3 (GLI3). When expressed in cells, the RET-P399L variant disrupted protein glycosylation and had altered phosphorylation following activation by GDNF. The deletion in GDNF prevented secretion of its gene product, reducing RET activation, and the IHH-Q51K variant reduced expression of the transcription factor GLI1. Injection of morpholinos that target ihh reduced the number of enteric neurons to 13% ± 1.4% of control zebrafish. CONCLUSIONS: In a study of a large family with history of HSCR, we identified variants in LRBA, RET, the gene encoding the RET ligand (GDNF), IHH, and a gene encoding a mediator of IHH signaling (GLI3). These variants altered functions of the gene products when expressed in cells and knockout of ihh reduced the number of enteric neurons in the zebrafish gut.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Proteínas Hedgehog/genética , Enfermedad de Hirschsprung/genética , Proteínas del Tejido Nervioso/genética , Proteínas Proto-Oncogénicas c-ret/genética , Proteína Gli3 con Dedos de Zinc/genética , Animales , Células COS , Chlorocebus aethiops , Familia , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Células HEK293 , Humanos , Masculino , Morfolinos , Países Bajos , Linaje , Isoformas de Proteínas , Proto-Oncogenes Mas , Análisis de Secuencia de ADN , Transducción de Señal , Pez Cebra
3.
Genome Biol ; 18(1): 48, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28274275

RESUMEN

BACKGROUND: Hirschsprung disease (HSCR), which is congenital obstruction of the bowel, results from a failure of enteric nervous system (ENS) progenitors to migrate, proliferate, differentiate, or survive within the distal intestine. Previous studies that have searched for genes underlying HSCR have focused on ENS-related pathways and genes not fitting the current knowledge have thus often been ignored. We identify and validate novel HSCR genes using whole exome sequencing (WES), burden tests, in silico prediction, unbiased in vivo analyses of the mutated genes in zebrafish, and expression analyses in zebrafish, mouse, and human. RESULTS: We performed de novo mutation (DNM) screening on 24 HSCR trios. We identify 28 DNMs in 21 different genes. Eight of the DNMs we identified occur in RET, the main HSCR gene, and the remaining 20 DNMs reside in genes not reported in the ENS. Knockdown of all 12 genes with missense or loss-of-function DNMs showed that the orthologs of four genes (DENND3, NCLN, NUP98, and TBATA) are indispensable for ENS development in zebrafish, and these results were confirmed by CRISPR knockout. These genes are also expressed in human and mouse gut and/or ENS progenitors. Importantly, the encoded proteins are linked to neuronal processes shared by the central nervous system and the ENS. CONCLUSIONS: Our data open new fields of investigation into HSCR pathology and provide novel insights into the development of the ENS. Moreover, the study demonstrates that functional analyses of genes carrying DNMs are warranted to delineate the full genetic architecture of rare complex diseases.


Asunto(s)
Exoma , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedad de Hirschsprung/genética , Alelos , Animales , Estudios de Casos y Controles , Biología Computacional/métodos , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Genotipo , Humanos , Mutación , Fenotipo , Pez Cebra
4.
Dev Biol ; 417(2): 129-38, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27235814

RESUMEN

Our current understanding of the developmental biology of the enteric nervous system (ENS) and the genesis of ENS diseases is founded almost entirely on studies using model systems. Although genetic studies in the mouse have been at the forefront of this field over the last 20 years or so, historically it was the easy accessibility of the chick embryo for experimental manipulations that allowed the first descriptions of the neural crest origins of the ENS in the 1950s. More recently, studies in the chick and other non-mammalian model systems, notably zebrafish, have continued to advance our understanding of the basic biology of ENS development, with each animal model providing unique experimental advantages. Here we review the basic biology of ENS development in chick and zebrafish, highlighting conserved and unique features, and emphasising novel contributions to our general understanding of ENS development due to technical or biological features.


Asunto(s)
Sistema Nervioso Entérico/embriología , Tracto Gastrointestinal/embriología , Tracto Gastrointestinal/inervación , Cresta Neural/embriología , Organogénesis/fisiología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Embrión de Pollo , Sistema Nervioso Entérico/fisiología , Regulación del Desarrollo de la Expresión Génica , Modelos Animales , Cresta Neural/fisiología
5.
Genesis ; 52(12): 985-90, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25264359

RESUMEN

The phox2b gene encodes a transcription factor that is expressed in the developing enteric nervous system (ENS). An enhancer element has been identified in the zebrafish phox2b locus that can drive tissue specific expression of reporter genes in enteric neuron precursor cells. We have generated a transgenic zebrafish line in which the Kaede fluorescent protein is under the control of this phox2b enhancer. This line has stable expression of the Kaede protein in enteric neuron precursor cells over three generations. To demonstrate the utility of this line we compared the migration and division rates of enteric neuron precursor cells in wild type and the zebrafish ENS mutant lessen.


Asunto(s)
Animales Modificados Genéticamente , Sistema Nervioso Entérico/metabolismo , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Elementos de Facilitación Genéticos , Sistema Nervioso Entérico/embriología , Proteínas de Homeodominio/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Especificidad de Órganos , Factores de Transcripción/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
Cell Tissue Res ; 354(2): 355-70, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23881406

RESUMEN

This immunohistochemical study in zebrafish aims to extend the neurochemical characterization of enteric neuronal subpopulations and to validate a marker for identification of interstitial cells of Cajal (ICC). The expression of neuropeptides and anoctamin 1 (Ano1), a selective ICC marker in mammals, was analyzed in both embryonic and adult intestine. Neuropeptides were present from 3 days postfertilization (dpf). At 3 dpf, galanin-positive nerve fibers were found in the proximal intestine, while calcitonin gene-related peptide (CGRP)- and substance P-expressing fibers appeared in the distal intestine. At 5 dpf, immunoreactive fibers were present along the entire intestinal length, indicating a well-developed peptidergic innervation at the onset of feeding. In the adult intestine, vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), galanin, CGRP and substance P were detected in nerve fibers. Colchicine pretreatment enhanced only VIP and PACAP immunoreactivity. VIP and PACAP were coexpressed in enteric neurons. Colocalization stainings revealed three neuronal subpopulations expressing VIP and PACAP: a nitrergic noncholinergic subpopulation, a serotonergic subpopulation and a subpopulation expressing no other markers. Ano1-immunostaining revealed a 3-dimensional network in the adult intestine containing multipolar cells at the myenteric plexus and bipolar cells interspersed between circular smooth muscle cells. Ano1 immunoreactivity first appeared at 3 dpf, indicative of the onset of proliferation of ICC-like cells. It is shown that the Ano1 antiserum is a selective marker of ICC-like cells in the zebrafish intestine. Finally, it is hypothesized that ICC-like cells mediate the spontaneous regular activity of the embryonic intestine.


Asunto(s)
Canales de Calcio/análisis , Células Intersticiales de Cajal/citología , Mucosa Intestinal/metabolismo , Intestinos/crecimiento & desarrollo , Neuronas/citología , Neuropéptidos/análisis , Proteínas de Pez Cebra/análisis , Pez Cebra/crecimiento & desarrollo , Animales , Anoctamina-1 , Péptido Relacionado con Gen de Calcitonina/análisis , Canales de Calcio/genética , Inmunohistoquímica , Células Intersticiales de Cajal/metabolismo , Intestinos/citología , Neuronas/metabolismo , Neuropéptidos/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/análisis , Péptido Intestinal Vasoactivo/análisis , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
7.
Gastroenterology ; 142(3): 453-462.e3, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22155368

RESUMEN

BACKGROUND & AIMS: Short-bowel syndrome usually results from surgical resection of the small intestine for diseases such as intestinal atresias, volvulus, and necrotizing enterocolitis. Patients with congenital short-bowel syndrome (CSBS) are born with a substantial shortening of the small intestine, to a mean length of 50 cm, compared with a normal length at birth of 190-280 cm. They also are born with intestinal malrotation. Because CSBS occurs in many consanguineous families, it is considered to be an autosomal-recessive disorder. We aimed to identify and characterize the genetic factor causing CSBS. METHODS: We performed homozygosity mapping using 610,000 K single-nucleotide polymorphism arrays to analyze the genomes of 5 patients with CSBS. After identifying a gene causing the disease, we determined its expression pattern in human embryos. We also overexpressed forms of the gene product that were and were not associated with CSBS in Chinese Hamster Ovary and T84 cells and generated a zebrafish model of the disease. RESULTS: We identified loss-of-function mutations in Coxsackie- and adenovirus receptor-like membrane protein (CLMP) in CSBS patients. CLMP is a tight-junction-associated protein that is expressed in the intestine of human embryos throughout development. Mutations in CLMP prevented its normal localization to the cell membrane. Knock-down experiments in zebrafish resulted in general developmental defects, including shortening of the intestine and the absence of goblet cells. Because goblet cells are characteristic for the midintestine in zebrafish, which resembles the small intestine in human beings, the zebrafish model mimics CSBS. CONCLUSIONS: Loss-of-function mutations in CLMP cause CSBS in human beings, likely by interfering with tight-junction formation, which disrupts intestinal development. Furthermore, we developed a zebrafish model of CSBS.


Asunto(s)
Intestino Delgado/anomalías , Mutación Missense , Receptores Virales/genética , Síndrome del Intestino Corto/genética , Adolescente , Adulto , Animales , Células CHO , Niño , Preescolar , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus , Cricetinae , Cricetulus , Modelos Animales de Enfermedad , Femenino , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Heterocigoto , Homocigoto , Humanos , Lactante , Recién Nacido , Intestino Delgado/metabolismo , Masculino , Morfogénesis , Fenotipo , Polimorfismo de Nucleótido Simple , Receptores Virales/metabolismo , Síndrome del Intestino Corto/embriología , Síndrome del Intestino Corto/metabolismo , Síndrome del Intestino Corto/patología , Transfección , Adulto Joven , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
J Comp Neurol ; 518(21): 4419-38, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20853514

RESUMEN

Although the morphology and development of the zebrafish enteric nervous system have been extensively studied, the precise neurochemical coding of enteric neurons and their proportional enteric distribution are currently not known. By using immunohistochemistry, we determined the proportional expression and coexpression of neurochemical markers in the embryonic and adult zebrafish intestine. Tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase-activating peptide (PACAP) were observed only in nerve fibers, whereas other markers were also detected in neuronal cell bodies. Calretinin and calbindin had similar distributions. In embryos, all markers, except for choline acetyltransferase (ChAT) and TH, were present from 72 hours postfertilization. Nitrergic neurons, evenly distributed and remaining constant in time, constituted the major neuronal subpopulation. The neuronal proportions of the other markers increased during development and were characterized by regional differences. In the adult, all markers examined were expressed in the enteric nervous system. A large percentage of enteric neurons displayed calbindin and calretinin, and serotonin was the only marker showing significant distribution differences in the three intestinal regions. Colocalization studies showed that serotonin was not coexpressed with any of the other markers. At least five neuronal subpopulations were determined: a serotonergic, a nitrergic noncholinergic, two cholinergic nonnitrergic subpopulations along with one subpopulation expressing both ChAT and neuronal nitric oxide synthase. Analysis of nerve fibers revealed that nitrergic neurons coexpress VIP and PACAP, and that nitrergic neurons innervate the tunica muscularis, whereas serotonergic and cholinergic nonnitrergic neurons innervate the lamina propria and the tunica muscularis.


Asunto(s)
Sistema Nervioso Entérico/citología , Neuronas/química , Neuronas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra , Animales , Biomarcadores/metabolismo , Calbindina 2 , Calbindinas , Colina O-Acetiltransferasa/metabolismo , Humanos , Intestino Delgado/inervación , Neuronas/citología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Proteína G de Unión al Calcio S100/metabolismo , Serotonina/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Pez Cebra/anatomía & histología , Pez Cebra/embriología
9.
EMBO J ; 29(10): 1637-51, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20360680

RESUMEN

Membrane and secretory trafficking are essential for proper neuronal development. However, the molecular mechanisms that organize secretory trafficking are poorly understood. Here, we identify Bicaudal-D-related protein 1 (BICDR-1) as an effector of the small GTPase Rab6 and key component of the molecular machinery that controls secretory vesicle transport in developing neurons. BICDR-1 interacts with kinesin motor Kif1C, the dynein/dynactin retrograde motor complex, regulates the pericentrosomal localization of Rab6-positive secretory vesicles and is required for neural development in zebrafish. BICDR-1 expression is high during early neuronal development and strongly declines during neurite outgrowth. In young neurons, BICDR-1 accumulates Rab6 secretory vesicles around the centrosome, restricts anterograde secretory transport and inhibits neuritogenesis. Later during development, BICDR-1 expression is strongly reduced, which permits anterograde secretory transport required for neurite outgrowth. These results indicate an important role for BICDR-1 as temporal regulator of secretory trafficking during the early phase of neuronal differentiation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Centrosoma/ultraestructura , Proteínas del Citoesqueleto/metabolismo , Neuronas/patología , Proteínas de Unión al GTP rab/metabolismo , Animales , Encéfalo/metabolismo , Células COS , Diferenciación Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Humanos , Riñón/metabolismo , Cinesinas/química , Modelos Biológicos , Neuronas/metabolismo , Pez Cebra
10.
Dev Dyn ; 239(2): 548-58, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20034103

RESUMEN

Cell-type specific regulation of a small number of growth factor signal transduction pathways generates diverse developmental outcomes. The zinc finger protein Churchill (ChCh) is a key effector of fibroblast growth factor (FGF) signaling during gastrulation. ChCh is largely thought to act by inducing expression of the multifunctional Sip1 (Smad Interacting Protein 1). We investigated the function of ChCh and Sip1a during zebrafish somitogenesis. Knockdown of ChCh or Sip1a results in misshapen somites that are short and narrow. As in wild-type embryos, cycling gene expression occurs in the developing somites in ChCh and Sip1a compromised embryos, but expression of her1 and her7 is maintained in formed somites. In addition, tail bud fgf8 expression is expanded anteriorly in these embryos. Finally, we found that blocking FGF8 restores somite morphology in ChCh and Sip1a compromised embryos. These results demonstrate a novel role for ChCh and Sip1a in repression of FGF activity.


Asunto(s)
Relojes Biológicos , Factores de Crecimiento de Fibroblastos/metabolismo , Mesodermo/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas Represoras/genética , Transducción de Señal , Transactivadores/genética , Pez Cebra , Proteínas de Pez Cebra/genética
11.
Zebrafish ; 6(2): 169-77, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19537943

RESUMEN

We have taken advantage of the strengths of the zebrafish model system to introduce developmental biology and genetics to undergraduates in their second semester of the Introductory Biology course at Emory. We designed a 6-week laboratory module based on research being undertaken by faculty in the department, and incorporated experiments that used current research methods including bioinformatics. Students undertook a range of experiments including direct observation of live wild-type zebrafish at different stages of embryogenesis, whole-mount in situ hybridization of mutant and wild-type embryos, vital dye staining of mutant and wild-type embryos, and pharmacological treatments to perturb normal development. These laboratories engaged the students by providing a hands-on, research-centered experience, while also enhancing their written (worksheets and laboratory reports) and oral (group presentation) communication skills. We describe the proceedings of each lab and the logistics of preparing and running these labs for 400-500 students (120 students taking lab each day), and provide a preliminary assessment of the success of the laboratories data based on student evaluations.


Asunto(s)
Biología Evolutiva/educación , Genética/educación , Pez Cebra/embriología , Pez Cebra/genética , Animales , Técnicas de Laboratorio Clínico , Estudiantes , Universidades
12.
Gastroenterology ; 136(3): 902-11, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19073184

RESUMEN

BACKGROUND & AIMS: Zebrafish mutants generated by ethylnitrosourea-mutagenesis provide a powerful tool for dissecting the genetic regulation of developmental processes, including organogenesis. One zebrafish mutant, "flotte lotte" (flo), displays striking defects in intestinal, liver, pancreas, and eye formation at 78 hours postfertilization (hpf). In this study, we sought to identify the underlying mutated gene in flo and link the genetic lesion to its phenotype. METHODS: Positional cloning was employed to map the flo mutation. Subcellular characterization of flo embryos was achieved using histology, immunocytochemistry, bromodeoxyuridine incorporation analysis, and confocal and electron microscopy. RESULTS: The molecular lesion in flo is a nonsense mutation in the elys (embryonic large molecule derived from yolk sac) gene, which encodes a severely truncated protein lacking the Elys C-terminal AT-hook DNA binding domain. Recently, the human ELYS protein has been shown to play a critical, and hitherto unsuspected, role in nuclear pore assembly. Although elys messenger RNA (mRNA) is expressed broadly during early zebrafish development, widespread early defects in flo are circumvented by the persistence of maternally expressed elys mRNA until 24 hpf. From 72 hpf, elys mRNA expression is restricted to proliferating tissues, including the intestinal epithelium, pancreas, liver, and eye. Cells in these tissues display disrupted nuclear pore formation; ultimately, intestinal epithelial cells undergo apoptosis. CONCLUSIONS: Our results demonstrate that Elys regulates digestive organ formation.


Asunto(s)
Apoptosis/fisiología , Mucosa Intestinal/anomalías , Mucosa Intestinal/fisiología , Proteínas de Complejo Poro Nuclear/genética , Poro Nuclear/patología , Proteínas de Pez Cebra/genética , Animales , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Sistema Nervioso Entérico/anomalías , Sistema Nervioso Entérico/patología , Sistema Nervioso Entérico/fisiología , Anomalías del Ojo/patología , Anomalías del Ojo/fisiopatología , Regulación del Desarrollo de la Expresión Génica , Mucosa Intestinal/patología , Intestinos/anomalías , Intestinos/patología , Intestinos/fisiología , Hígado/anomalías , Hígado/patología , Hígado/fisiología , Microscopía Electrónica , Poro Nuclear/fisiología , Poro Nuclear/ultraestructura , Proteínas de Complejo Poro Nuclear/metabolismo , Páncreas/anomalías , Páncreas/patología , Páncreas/fisiología , Fenotipo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
13.
Dev Biol ; 319(2): 179-91, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18501887

RESUMEN

Neural crest-derived structures that depend critically upon expression of the basic helix-loop-helix DNA binding protein Hand2 for normal development include craniofacial cartilage and bone, the outflow tract of the heart, cardiac cushion, and noradrenergic sympathetic ganglion neurons. Loss of Hand2 is embryonic lethal by E9.5, obviating a genetic analysis of its in-vivo function. We have overcome this difficulty by specific deletion of Hand2 in neural crest-derived cells by crossing our line of floxed Hand2 mice with Wnt1-Cre transgenic mice. Our analysis of Hand2 knock-out in neural crest-derived cells reveals effects on development in all neural crest-derived structures where Hand2 is expressed. In the autonomic nervous system, conditional disruption of Hand2 results in a significant and progressive loss of neurons as well as a significant loss of TH expression. Hand2 affects generation of the neural precursor pool of cells by affecting both the proliferative capacity of the progenitors as well as affecting expression of Phox2a and Gata3, DNA binding proteins important for the cell autonomous development of noradrenergic neurons. Our data suggest that Hand2 is a multifunctional DNA binding protein affecting differentiation and cell type-specific gene expression in neural crest-derived noradrenergic sympathetic ganglion neurons. Hand2 has a pivotal function in a non-linear cross-regulatory network of DNA binding proteins that affect cell autonomous control of differentiation and cell type-specific gene expression.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Eliminación de Gen , Cresta Neural/fisiología , Neuronas/fisiología , Células Ganglionares de la Retina/fisiología , Sistema Nervioso Simpático/embriología , Animales , Regulación de la Expresión Génica , Inmunohistoquímica , Ratones , Ratones Noqueados , Microscopía Confocal , Sistema Nervioso Simpático/fisiología , Transcripción Genética
14.
Dev Biol ; 318(1): 52-64, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18436202

RESUMEN

The zebrafish enteric nervous system (ENS), like those of all other vertebrate species, is principally derived from the vagal neural crest cells (NCC). The developmental controls that govern the migration, proliferation and patterning of the ENS precursors are not well understood. We have investigated the roles of endoderm and Sonic hedgehog (SHH) in the development of the ENS. We show that endoderm is required for the migration of ENS NCC from the vagal region to the anterior end of the intestine. We show that the expression of shh and its receptor ptc-1 correlate with the development of the ENS and demonstrate that hedgehog (HH) signaling is required in two phases, a pre-enteric and an enteric phase, for normal ENS development. We show that HH signaling regulates the proliferation of vagal NCC and ENS precursors in vivo. We also show the zebrafish hand2 is required for the normal development of the intestinal smooth muscle and the ENS. Furthermore we show that endoderm and HH signaling, but not hand2, regulate gdnf expression in the intestine, highlighting a central role of endoderm and SHH in patterning the intestine and the ENS.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Endodermo/metabolismo , Sistema Nervioso Entérico/embriología , Proteínas Hedgehog/metabolismo , Mesodermo/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Tipificación del Cuerpo , Movimiento Celular/fisiología , Endodermo/citología , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Proteínas Hedgehog/genética , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Proteínas de la Membrana , Mesodermo/citología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores Patched , Receptor Patched-1 , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción SOX , Transducción de Señal/fisiología , Células Madre/citología , Células Madre/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Alcaloides de Veratrum/metabolismo , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
15.
Dev Dyn ; 237(4): 1060-9, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18351671

RESUMEN

Smad-interacting protein-1 (SIP1) has been implicated in the development of Mowat-Wilson syndrome whose patients exhibit Hirschsprung disease, an aganglionosis of the large intestine, as well as other phenotypes. We have identified and cloned two sip1 orthologues in zebrafish. Both sip1 orthologues are expressed maternally and have dynamic zygotic expression patterns that are temporally and spatially distinct. We have investigated the function of both orthologues using translation and splice-blocking morpholino antisense oligonucleotides. Knockdown of the orthologues causes axial and neural patterning defects consistent with the previously described function of SIP1 as an inhibitor of BMP signaling. In addition, knockdown of both genes leads to a significant reduction/loss of the post-otic cranial neural crest. This results in a subsequent absence of neural crest precursors in the posterior pharyngeal arches and a loss of enteric precursors in the intestine.


Asunto(s)
Tipificación del Cuerpo , Proteínas Portadoras/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra , Animales , Secuencia de Bases , Proteínas Portadoras/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular , Datos de Secuencia Molecular , Morfogénesis , Cresta Neural/citología , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Fenotipo , Isoformas de Proteínas/genética , Células Madre/fisiología , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
16.
Genetics ; 174(2): 693-705, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16582438

RESUMEN

The transcriptional mediator complex has emerged as an important component of transcriptional regulation, yet it is largely unknown whether its subunits have differential functions in development. We demonstrate that the zebrafish mutation m885 disrupts a subunit of the mediator complex, Crsp34/Med27. To explore the role of the mediator in the control of retinal differentiation, we employed two additional mutations disrupting the mediator subunits Trap100/Med24 and Crsp150/Med14. Our analysis shows that loss of Crsp34/Med27 decreases amacrine cell number, but increases the number of rod photoreceptor cells. In contrast, loss of Trap100/Med24 decreases rod photoreceptor cells. Loss of Crsp150/Med14, on the other hand, only slightly reduces dopaminergic amacrine cells, which are absent from both crsp34(m885) and trap100(lessen) mutant embryos. Our data provide evidence for differential requirements for Crsp34/Med27 in developmental processes. In addition, our data point to divergent functions of the mediator subunits Crsp34/Med27, Trap100/Med24, and Crsp150/Med14 and, thus, suggest that subunit composition of the mediator contributes to the control of differentiation in the vertebrate CNS.


Asunto(s)
Subunidades de Proteína/fisiología , Retina/embriología , Transactivadores/fisiología , Proteínas de Pez Cebra/fisiología , Alelos , Células Amacrinas/citología , Animales , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Complejo Mediador , Fenotipo , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/genética , Retina/metabolismo , Transactivadores/biosíntesis , Transactivadores/genética , Pez Cebra , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/genética
17.
Development ; 133(3): 395-406, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16396911

RESUMEN

The zebrafish enteric nervous system (ENS), like those of all other vertebrate species, is principally derived from the vagal neural crest. The developmental controls that govern the specification and patterning of the ENS are not well understood. To identify genes required for the formation of the vertebrate ENS, we preformed a genetic screen in zebrafish. We isolated the lessen (lsn) mutation that has a significant reduction in the number of ENS neurons as well as defects in other cranial neural crest derived structures. We show that the lsn gene encodes a zebrafish orthologue of Trap100, one of the subunits of the TRAP/mediator transcriptional regulation complex. A point mutation in trap100 causes a premature stop codon that truncates the protein, causing a loss of function. Antisense-mediated knockdown of trap100 causes an identical phenotype to lsn. During development trap100 is expressed in a dynamic tissue-specific expression pattern consistent with its function in ENS and jaw cartilage development. Analysis of neural crest markers revealed that the initial specification and migration of the neural crest is unaffected in lsn mutants. Phosphohistone H3 immunocytochemistry revealed that there is a significant reduction in proliferation of ENS precursors in lsn mutants. Using cell transplantation studies, we demonstrate that lsn/trap100 acts cell autonomously in the pharyngeal mesendoderm and influences the development of neural crest derived cartilages secondarily. Furthermore, we show that endoderm is essential for ENS development. These studies demonstrate that lsn/trap100 is not required for initial steps of cranial neural crest development and migration, but is essential for later proliferation of ENS precursors in the intestine.


Asunto(s)
Tipificación del Cuerpo , Sistema Nervioso Entérico/embriología , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Animales , Movimiento Celular , Clonación Molecular , Endodermo/fisiología , Sistema Nervioso Entérico/fisiología , Huesos Faciales/anatomía & histología , Huesos Faciales/embriología , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación in Situ , Masculino , Mutación , Cresta Neural/citología , Cresta Neural/fisiología , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Fenotipo , Cráneo/anatomía & histología , Cráneo/embriología , Timo/anatomía & histología , Timo/embriología , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Pez Cebra/genética
18.
Dev Biol ; 290(2): 265-76, 2006 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-16405941

RESUMEN

It is a widely held belief that the arterial pole of the zebrafish heart is unusual among models of comparative cardiogenesis. This is based, in part, on the report that the bulbus arteriosus undergoes a striated-to-smooth muscle phenotypic transition during development. An implication of this is that the zebrafish, a model almost ubiquitously accepted in other fields of comparative biology, may be poorly suited to the study of conotruncal abnormalities in human disease. However, while the use of atrioventricular-specific molecular markers has allowed extensive characterization of the development of the atrium and ventricle, the lack of any bulbus-specific markers has meant that this region of the zebrafish heart is poorly characterized and quite possibly misunderstood. We have discovered that the fluorescent nitric oxide indicator 4,5-diaminofluorescein diacetate (DAF-2DA) specifically labels the bulbus arteriosus throughout development from approximately 48 h post-fertilization. Therefore, using DAF-2DA and an immunohistochemical approach, we attempted to further characterize the development of the bulbus. We have concluded that no such phenotypic transition occurs, that contrary to current thinking, aspects of zebrafish arterial pole development are evolutionarily conserved, and that the bulbus should not be considered a chamber, being more akin to the arterial trunk(s) of higher vertebrates.


Asunto(s)
Arterias/embriología , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Animales , Tipificación del Cuerpo , Embrión de Pollo , Fluoresceína/farmacología , Marcadores Genéticos , Humanos , Inmunohistoquímica , Microscopía Fluorescente , Músculo Liso/metabolismo , Miocardio/metabolismo , Óxido Nítrico/metabolismo , Parafina/química , Fenotipo , Factores de Tiempo , Pez Cebra
19.
Development ; 131(1): 241-9, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14660438

RESUMEN

Components of the zebrafish GDNF receptor complex are expressed very early in the development of enteric nervous system precursors, and are already present as these cells begin to enter the gut and migrate caudally along its length. Both gfra1a and gfra1b as well as ret are expressed at this time, while gfra2 expression, the receptor component that binds the GDNF-related ligand neurturin, is not detected until the precursors have migrated along the gut. Gfra genes are also expressed in regions of the zebrafish brain and peripheral ganglia, expression domains conserved with other species. Enteric neurons are eliminated after injection with antisense morpholino oligonucleotides against ret or against both Gfra1 orthologs, but are not affected by antisense oligonucleotides against gfra2. Blocking GDNF signaling prevents migration of enteric neuron precursors, which remain positioned at the anterior end of the gut. Phenotypes induced by injection of antisense morpholinos against both Gfra orthologs can be rescued by introduction of mRNA for gfra1a or for gfra2, suggesting that GFRalpha1 and GFRalpha2 are functionally equivalent.


Asunto(s)
Sistema Nervioso/embriología , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Pez Cebra/embriología , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Pollos , Secuencia Conservada , Embrión no Mamífero/fisiología , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial , Humanos , Hibridación in Situ , Datos de Secuencia Molecular , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas c-ret , Proteínas Tirosina Quinasas Receptoras/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Proteínas de Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...