Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Intervalo de año de publicación
1.
Plants (Basel) ; 12(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37050081

RESUMEN

Polystichum lonchitis L. is a fern belonging to the family Dryopteridaceae. The present study was conducted to evaluate its pharmacological, antioxidant, and phytochemical properties, and to conduct GC-MS screening of P. lonchitis. The acetic acid-induced writhing test, yeast-induced hyperpyrexia method, carrageenan-induced rat paw edema model, and charcoal meal test model were carried out to assess analgesic, antipyretic, anti-inflammatory, and antispasmodic activity, respectively. DPPH was used as an antioxidant, while the phytochemical screening was conducted using standard scientific methods. Among the pharmacological activities, the most significant effects were observed in the analgesic and anti-inflammatory activities, followed by the antipyretic and antispasmodic activities, at a dose of 450 mg/kg after the 4th hour, compared with 150 mg/kg and 300 mg/kg. For the evaluation of antioxidant activities, the most significant results were detected in the methanolic and aqueous extracts. The detection of flavonoids and phenol occurred most significantly in the methanolic extract, and then in the ethanolic and aqueous extracts. The main compounds detected using GC-MS analysis with a high metabolic rate was 𝛼-D-Galactopyranoside, which had a metabolic rate of 0.851, and methyl and n-hexadecanoic, which had a metabolic rate of 0.972. Overall, the results suggested that P. lonchitis had a strong potential for pharmacological activities. The suggested assessment provided a way to isolate the bioactive constituents and will help to provide new medicines with fewer side effects. Due to the fern's effectiveness against various diseases, the results provide clear evidence that they also have the potential to cure various diseases.

2.
Plants (Basel) ; 12(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36771572

RESUMEN

In the natural environment, plants grow and interact with both conspecific and heterospecific neighbours under different environmental conditions. In this study, we tested whether Chenopodium quinoa Willd genotypes differ in growth performance when grown with kin and non-kin under nutrient limitation in pot partitioning treatments. Biomass accumulation, allocation, organ efficiency, and specific leaf area were measured at the end of the experiment. Response variables were differentially impacted by kinship, fertility, and barrier. Total dry mass, shoot dry mass, and root and stem allocation were greater for plants grown with kin in connected pots than with non-kin in connected pots across the nutrient treatments. Kin connected and disconnected plants had a greater specific root length, specific stem length, and average leaf mass than non-kin connected and disconnected plants. Non-kin connected and disconnected plants had greater LAR and SLA than kin connected and disconnected plants under low- and high-nutrient treatments. Plants always grew better in the presence of their kin than non-kin. These results conclude that quinoa plant production benefits from planting closely related individuals under both high- and low-nutrient conditions.

3.
Clin Infect Dis ; 76(3): e227-e233, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35737948

RESUMEN

BACKGROUND: In January 2022, US guidelines shifted to recommend isolation for 5 days from symptom onset, followed by 5 days of mask-wearing. However, viral dynamics and variant and vaccination impact on culture conversion are largely unknown. METHODS: We conducted a longitudinal study on a university campus, collecting daily anterior nasal swabs for at least 10 days for reverse-transcription polymerase chain reaction (RT-PCR) testing and culture, with antigen rapid diagnostic testing (RDT) on a subset. We compared culture positivity beyond day 5, time to culture conversion, and cycle threshold trend when calculated from diagnostic test, from symptom onset, by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, and by vaccination status. We evaluated sensitivity and specificity of RDT on days 4-6 compared with culture. RESULTS: Among 92 SARS-CoV-2 RT-PCR-positive participants, all completed the initial vaccine series; 17 (18.5%) were infected with Delta and 75 (81.5%) with Omicron. Seventeen percent of participants had positive cultures beyond day 5 from symptom onset, with the latest on day 12. There was no difference in time to culture conversion by variant or vaccination status. For 14 substudy participants, sensitivity and specificity of day 4-6 RDT were 100% and 86%, respectively. CONCLUSIONS: The majority of our Delta- and Omicron-infected cohort culture-converted by day 6, with no further impact of booster vaccination on sterilization or cycle threshold decay. We found that rapid antigen testing may provide reassurance of lack of infectiousness, though guidance to mask for days 6-10 is supported by our finding that 17% of participants remained culture-positive after isolation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Estudios Longitudinales , SARS-CoV-2/genética , COVID-19/diagnóstico , Estudios de Cohortes , Inmunización Secundaria
4.
Plants (Basel) ; 11(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36297706

RESUMEN

Intercropping cover crops with trees enhance land productivity and improves the soil's physio-chemical properties while reducing the negative environmental impact. However, there is a lack of quantitative information on the relationships between fine root biomass and available soil nutrients, e.g., nitrogen (N), phosphorus (P), and potassium (K), especially in the rubber-Flemingia macrophylla intercropping system. Therefore, this study was initiated to explore the seasonal variation in fine root biomass and available soil nutrients at different stand ages (12, 15, and 24 years) and management systems, i.e., rubber monoculture (mono) and rubber-Flemingia macrophylla intercropping. In this study, we sampled 900 soil cores over five seasonal intervals, representing one year of biomass. The results showed that the total fine root biomass was greater in 12-year-old rubber monoculture; the same trend was observed in soil nutrients P and K. Furthermore, total fine root biomass had a significant positive correlation with available N (p < 0.001) in rubber monoculture and intercropping systems. Thus, it suggests that fine root growth and accumulation is a function of available soil nutrients. Our results indicate that fine root biomass and soil nutrients (P and K) may be determined by the functional characteristics of dominant tree species rather than collective mixed-species intercropping and are closely linked to forest stand type, topographic and edaphic factors. However, further investigations are needed to understand interspecific and complementary interactions between intercrop species under the rubber-Flemingia macrophylla intercropping system.

5.
Front Plant Sci ; 13: 869072, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720536

RESUMEN

Heavy metal (HM) contamination resulting from industrialization and urbanization during the Anthropocene along with plant invasion can severely threaten the growth and adaptation of local flora. Invasive alien plant species generally exhibit a growth pattern consistent with their functional traits in non-contaminated environments in the introduced range. However, it remains unclear whether invasive alien plants have an advantage over native plants in contaminated environments and whether this growth pattern is dependent on the adaptation of their leaf functional traits. Here, we selected two congeneric pairs of invasive alien and native grasses that naturally co-exist in China and are commonly found growing in contaminated soil. To evaluate the effect of cadmium (Cd) on the structural and physiological leaf traits, we grew all four species in soil contaminated without or with 80 mg/kg Cd. Invasive plants contained significantly higher concentrations of Cd in all three organs (leaf, stem, and root). They displayed a higher transfer factor and bioconcentration factor (BCF) of shoot and root than natives, indicating that invasive species are potential Cd hyperaccumulators. Invasive plants accumulated polyphenol oxidase (PPO) to higher levels than natives and showed similar patterns of leaf structural and physiological traits in response to changes in Cd bioconcentration. The quantifiable leaf structural traits of invasive plants were significantly greater (except for stomatal density and number of dead leaves) than native plants. Leaf physiological traits, chlorophyll content, and flavonoid content were also significantly higher in invasive plants than in natives under Cd stress conditions after 4 weeks, although nitrogen balance index (NBI) showed no significant difference between the two species. Chlorophyll fluorescence parameters decreased, except for the quantum yield of photosystem II (ΦPSII) and the proportion of open photosystem II (qP), which increased under Cd stress conditions in both species. However, invasive plants exhibited higher fluorescence parameters than natives under Cd stress, and the decrement observed in invasive plants under Cd stress was greater than that in natives. High Cd adaptation of invasive grasses over natives suggests that invasive plants possess optimal leaf structural and physiological traits, which enable them to adapt to stressful conditions and capture resources more quickly than natives. This study further emphasizes the potential invasion of alien plants in contaminated soil environments within the introduced range. To a certain extent, some non-invasive alien plants might adapt to metalliferous environments and serve as hyperaccumulator candidates in phytoremediation projects in contaminated environments.

6.
medRxiv ; 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35411341

RESUMEN

Background: In January 2022, United States guidelines shifted to recommend isolation for 5 days from symptom onset, followed by 5 days of mask wearing. However, viral dynamics and variant and vaccination impact on culture conversion are largely unknown. Methods: We conducted a longitudinal study on a university campus, collecting daily anterior nasal swabs for at least 10 days for RT-PCR and culture, with antigen rapid diagnostic testing (RDT) on a subset. We compared culture positivity beyond day 5, time to culture conversion, and cycle threshold trend when calculated from diagnostic test, from symptom onset, by SARS-CoV-2 variant, and by vaccination status. We evaluated sensitivity and specificity of RDT on days 4-6 compared to culture. Results: Among 92 SARS-CoV-2 RT-PCR positive participants, all completed the initial vaccine series, 17 (18.5%) were infected with Delta and 75 (81.5%) with Omicron. Seventeen percent of participants had positive cultures beyond day 5 from symptom onset with the latest on day 12. There was no difference in time to culture conversion by variant or vaccination status. For the 14 sub-study participants, sensitivity and specificity of RDT were 100% and 86% respectively. Conclusions: The majority of our Delta- and Omicron-infected cohort culture-converted by day 6, with no further impact of booster vaccination on sterilization or cycle threshold decay. We found that rapid antigen testing may provide reassurance of lack of infectiousness, though masking for a full 10 days is necessary to prevent transmission from the 17% of individuals who remain culture positive after isolation. Main Point: Beyond day 5, 17% of our Delta and Omicron-infected cohort were culture positive. We saw no significant impact of booster vaccination on within-host Omicron viral dynamics. Additionally, we found that rapid antigen testing may provide reassurance of lack of infectiousness.

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22273429

RESUMEN

BackgroundIn January 2022, United States guidelines shifted to recommend isolation for 5 days from symptom onset, followed by 5 days of mask wearing. However, viral dynamics and variant and vaccination impact on culture conversion are largely unknown. MethodsWe conducted a longitudinal study on a university campus, collecting daily anterior nasal swabs for at least 10 days for RT-PCR and culture, with antigen rapid diagnostic testing (RDT) on a subset. We compared culture positivity beyond day 5, time to culture conversion, and cycle threshold trend when calculated from diagnostic test, from symptom onset, by SARS-CoV-2 variant, and by vaccination status. We evaluated sensitivity and specificity of RDT on days 4-6 compared to culture. ResultsAmong 92 SARS-CoV-2 RT-PCR positive participants, all completed the initial vaccine series, 17 (18.5%) were infected with Delta and 75 (81.5%) with Omicron. Seventeen percent of participants had positive cultures beyond day 5 from symptom onset with the latest on day 12. There was no difference in time to culture conversion by variant or vaccination status. For the 14 sub-study participants, sensitivity and specificity of RDT were 100% and 86% respectively. ConclusionsThe majority of our Delta- and Omicron-infected cohort culture-converted by day 6, with no further impact of booster vaccination on sterilization or cycle threshold decay. We found that rapid antigen testing may provide reassurance of lack of infectiousness, though masking for a full 10 days is necessary to prevent transmission from the 17% of individuals who remain culture positive after isolation. Main PointBeyond day 5, 17% of our Delta and Omicron-infected cohort were culture positive. We saw no significant impact of booster vaccination on within-host Omicron viral dynamics. Additionally, we found that rapid antigen testing may provide reassurance of lack of infectiousness.

8.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22271766

RESUMEN

ImportanceRecent CDC COVID-19 isolation guidance for non-immunocompromised individuals with asymptomatic or mild infection allows ending isolation after 5 days if asymptomatic or afebrile with improving symptoms. The role of rapid antigen testing in further characterizing the risk of viral transmission to others is unclear. ObjectiveUnderstand rates of rapid antigen test (RAT) positivity after day 5 from a positive COVID-19 test and the relationship of this result to symptoms and viral culture. DesignIn this single center, observational cohort study, ambulatory individuals newly testing SARS-CoV-2 positive completed daily symptom logs, and RAT self-testing starting day 6 until negative. Anterior nasal and oral swabs were collected on a subset for viral culture. Main Outcomes and MeasuresDay 6 SARS-CoV-2 RAT result, symptoms and viral culture. Results40 individuals enrolled between January 5 and February 11, 2022 with a mean age of 32 years (range 22 to 57). 23 (58%) were women and 17 (42%) men. All were vaccinated. 33 (83%) were symptomatic. Ten (25%) tested RAT negative on day 6. 61 of 90 (68%) RATs performed on asymptomatic individuals after day 5 were positive. Day 6 viral cultures were positive in 6 (35%) of 17 individuals. A negative RAT or being asymptomatic on day 6 were 100% and 78% predictive respectively for negative culture, while improving symptoms was 69% predictive. A positive RAT was 50% predictive of positive culture. Conclusion and RelevanceRATs are suboptimal in predicting viral culture results on day 6. Use of routine RATs to guide end of COVID-19 isolation could result in significant numbers of culture negative, potentially non-infectious individuals undergoing prolonged isolation. However, a negative RAT was highly predictive of being culture negative. Complete absence of symptoms was inferior to a negative RAT in predicting a negative culture result, but performed better than improving symptoms. If a positive viral culture is a proxy for infectiousness, these data may help further refine a safer strategy for ending isolation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...