Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 24(4)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35455186

RESUMEN

Heat transport augmentation in closed chambers can be achieved using nanofluids and extended heat transfer surfaces. This research is devoted to the computational analysis of natural convection energy transport and entropy emission within a closed region, with isothermal vertical borders and a heat-conducting solid fin placed on the hot border. Horizontal walls were assumed to be adiabatic. Control relations written using non-primitive variables with experimentally based correlations for nanofluid properties were computed by the finite difference technique. The impacts of the fin size, fin position, and nanoadditive concentration on energy transfer performance and entropy production were studied. It was found that location of the long fin near the bottom wall allowed for the intensification of convective heat transfer within the chamber. Moreover, this position was characterized by high entropy generation. Therefore, the minimization of the entropy generation can define the optimal location of the heat-conducting fin using the obtained results. An addition of nanoparticles reduced the heat transfer strength and minimized the entropy generation.

2.
Nanomaterials (Basel) ; 12(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35269275

RESUMEN

The hybrid nanofluid has sparked new significance in the industrial and engineering sectors because of their applications like water heating in solar and analysis of heat exchanger surfaces. As a result, the current study emphasizes the analysis of heat transfer and Agrawal axisymmetric flow towards a rotational stagnation point incorporated via hybrid nanofluids imposing on a radially permeable shrinking/stretching rotating disk. The leading partial differential equations are refined into ordinary differential equations by using appropriate similarity variables. The bvp4c solver in MATLAB is then employed to solve the simplified system numerically. The current numerical procedure is adequate of generating double solutions when excellent initial guesses are implemented. The results show that the features of fluid flow along with heat transfer rate induced by hybrid nanofluid are significantly influenced. The Nusselt number and the tendency of the wall drag force can be improved as the concentration of nanoparticles and the suction factor are increased. Moreover, the results of the model have been discussed in detail for both solution branches due to the cases of rotating disk parameter as well as non-rotating disk parameter. Therefore, an extraordinary behavior is observed for the branch of lower solutions in the case of rotating disk parameter. In addition, the shear stress in the radial direction upsurges for the first solution but declines for the second solution with higher values of suction. Moreover, the rotating parameter slows down the separation of the boundary layer.

3.
Entropy (Basel) ; 23(6)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34205028

RESUMEN

The heat transfer enhancement and fluid flow control in engineering systems can be achieved by addition of ferric oxide nanoparticles of small concentration under magnetic impact. To increase the technical system life cycle, the entropy generation minimization technique can be employed. The present research deals with numerical simulation of magnetohydrodynamic thermal convection and entropy production in a ferrofluid chamber under the impact of an internal vertical hot sheet. The formulated governing equations have been worked out by the in-house program based on the finite volume technique. Influence of the Hartmann number, Lorentz force tilted angle, nanoadditives concentration, dimensionless temperature difference, and non-uniform heating parameter on circulation structures, temperature patterns, and entropy production has been scrutinized. It has been revealed that a transition from the isothermal plate to the non-uniformly warmed sheet illustrates a rise of the average entropy generation rate, while the average Nusselt number can be decreased weakly. A diminution of the mean entropy production strength can be achieved by an optimal selection of the Lorentz force tilted angle.

4.
Nanomaterials (Basel) ; 11(7)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209726

RESUMEN

Nanofluids as a combination of base fluid and a low concentration of nano-sized particles of metal or metal oxides are used in different fields of human activity, including engineering devices in power and chemical engineering, medicine, electronics, and others [...].

5.
Molecules ; 26(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33669098

RESUMEN

Thermal energy storage is a technique that has the potential to contribute to future energy grids to reduce fluctuations in supply from renewable energy sources. The principle of energy storage is to drive an endothermic phase change when excess energy is available and to allow the phase change to reverse and release heat when energy demand exceeds supply. Unwanted charge leakage and low heat transfer rates can limit the effectiveness of the units, but both of these problems can be mitigated by incorporating a metal foam into the design of the storage unit. This study demonstrates the benefits of adding copper foam into a thermal energy storage unit based on capric acid enhanced by copper nanoparticles. The volume fraction of nanoparticles and the location and porosity of the foam were optimized using the Taguchi approach to minimize the charge leakage expected from simulations. Placing the foam layer at the bottom of the unit with the maximum possible height and minimum porosity led to the lowest charge time. The optimum concentration of nanoparticles was found to be 4 vol.%, while the maximu possible concentration was 6 vol.%. The use of an optimized design of the enclosure and the optimum fraction of nanoparticles led to a predicted charging time for the unit that was approximately 58% shorter than that of the worst design. A sensitivity analysis shows that the height of the foam layer and its porosity are the dominant variables, and the location of the porous layer and volume fraction of nanoparticles are of secondary importance. Therefore, a well-designed location and size of a metal foam layer could be used to improve the charging speed of thermal energy storage units significantly. In such designs, the porosity and the placement-location of the foam should be considered more strongly than other factors.


Asunto(s)
Cobre/química , Ácidos Decanoicos/química , Nanopartículas/química , Temperatura , Tamaño de la Partícula , Transición de Fase , Porosidad , Propiedades de Superficie
6.
Nanomaterials (Basel) ; 10(3)2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32210154

RESUMEN

Thermogravitational convective thermal transmission, inside a square differentially-heated chamber with a nanoliquid, has been examined in the presence of internal adiabatic or a thermally-conducting solid body. A single-phase nanoliquid approach is employed, based on the experimentally-extracted relations for nanofluid heat conductivity and dynamic viscosity. The governing equations have been written using non-primitive parameters such as stream function and vorticity. Such approach allows a decrease in computational time due to a reduction of equation numbers. One of the main challenges in such a technique is a determining the stream function magnitude at the inner body walls. A solution of this problem has been described in detail in this paper. Computational scrutinizing has been performed by employing the finite difference technique. The mesh sensitivity analysis and comparison with theoretical and experimental results of other researchers have been included. An influence of the Rayleigh number, nanoparticles concentration, internal block size, heat conductivity ratio and non-dimensional time on nanofluid motion and energy transport has been studied.

7.
Nanomaterials (Basel) ; 10(2)2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046077

RESUMEN

The cooling of electronic elements is one of the most important problems in the development of architecture in electronic technology. One promising developing cooling method is heat sinks based on the phase change materials (PCMs) enhanced by nano-sized solid particles. In this paper, the influence of the PCM's physical properties and the concentration of nanoparticles on heat and mass transfer inside a closed radiator with fins, in the presence of a source of constant volumetric heat generation, is analyzed. The conjugate problem of nano-enhanced phase change materials (NePCMs) melting is considered, taking into account natural convection in the melt under the impact of the external convective cooling. A two-dimensional problem is formulated in the non-primitive variables, such as stream function and vorticity. A single-phase nano-liquid model is employed to describe the transport within NePCMs.

8.
Nanomaterials (Basel) ; 10(1)2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31861605

RESUMEN

Many passive heat controlling technologies are based on the use of phase change materials. As a rule, at low operation temperatures, close to environmental conditions, paraffins or fatty acids with melting points of 20-90 °C are used. However, the low thermal conductivity of these materials requires the development of various heat transfer enhancers satisfying technical requirements. In this work, the possibility of nanoparticle application to the heat transfer augmentation inside a closed copper radiator filled with pure n-octadecane, depending on the thermal conditions of the local heater and other system parameters, are numerically investigated.

9.
PLoS One ; 10(5): e0126486, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25993540

RESUMEN

The free convection heat transfer of Cu-water nanofluids in a parallelogrammic enclosure filled with porous media is numerically analyzed. The bottom and top of the enclosure are insulated while the sidewalls are subject to limited temperature difference. The Darcy flow and the Tiwari and Das' nanofluid models are considered. The governing dimensionless partial differential equations are numerically solved using a finite difference code. The results are reported for isotherms and streamlines as well as Nusselt number as a function of the volume fraction of nanoparticles, porosity, types of the porous matrix, inclination angle, aspect ratio and different Rayleigh numbers. It is found that the presence of the nanoparticles inside the enclosure deteriorates the heat transfer rate, which is caused due to the increase of dynamic viscosity by the presence of nanoparticles. Therefore, in applications in which the nanofluids are used for their advantages, such as enhanced dielectric properties or antibacterial properties, more caution for the heat transfer design of the enclosure is necessary.


Asunto(s)
Modelos Teóricos , Nanotecnología , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...