Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Am J Physiol Cell Physiol ; 326(1): C40-C49, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37955120

RESUMEN

The blood-brain barrier is composed of microvascular endothelial cells, immune cells, and astrocytes that work in concert with the coagulation cascade to control inflammation and immune cell infiltration into the central nervous system. Endothelial cell dysfunction leading to increased permeability and compromised barrier function are hallmarks of neuroinflammatory and autoimmune disorders, including multiple sclerosis (MS). Therapeutic strategies that improve or protect endothelial barrier function may be beneficial in the treatment or prevention of neuroinflammatory diseases. We therefore tested the hypothesis that biasing thrombin toward anticoagulant and cytoprotective activities would provide equivalent or even additive benefit compared with standard-of-care therapeutic strategies, including corticosteroids. In a mouse model of relapsing-remitting MS, treatment with the thrombin mutant, E-WE thrombin, an engineered thrombin mutant with cytoprotective activities that is biased toward anticoagulant and cytoprotective activity, reduced neuroinflammation and extracellular fibrin formation in SJL mice inoculated with proteolipid protein (PLP) peptide. When administered at the onset of detectable disease, E-WE thrombin significantly improved the disease severity of the initial attack as well as the relapse and delayed the onset of relapse to a similar extent as observed with methylprednisolone. Both methylprednisolone and E-WE thrombin reduced demyelination and immune cell recruitment. These results provide rationale for considering engineered forms of thrombin biased toward anticoagulant and cytoprotective activity as a therapeutic strategy and perhaps an effective alternative to high-dose methylprednisolone for the management of acute relapsing MS attacks.NEW & NOTEWORTHY There are limited treatment options for mitigating acute relapsing attacks for patients with multiple sclerosis. We tested the hypothesis that harnessing the cytoprotective activity of the blood coagulation enzyme, thrombin, would provide benefit and protection against relapsing disease in a mouse model of MS. Our results provide rationale for considering engineered forms of thrombin biased toward cytoprotective activity as a therapeutic strategy and perhaps an alternative to steroids for the management of relapsing MS attacks.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Trombina , Animales , Humanos , Ratones , Anticoagulantes , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Metilprednisolona , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Gravedad del Paciente , Recurrencia , Trombina/uso terapéutico
2.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38069249

RESUMEN

Seizures are common in preterm newborns and are associated with poor neurodevelopmental outcomes. Current anticonvulsants have poor efficacy, and many have been associated with upregulation of apoptosis in the developing brain. Apigenin, a natural bioactive flavonoid, is a potent inhibitor of hyaluronidase and reduces seizures in adult animal models. However, its impact on perinatal seizures is unclear. In the present study, we examined the effect of apigenin and S3, a synthetic, selective hyaluronidase inhibitor, on seizures after cerebral ischemia in preterm fetal sheep at 0.7 gestation (98-99 days, term ~147 days). Fetuses received sham ischemia (n = 9) or ischemia induced by bilateral carotid occlusion for 25 min. Immediately after ischemia, fetuses received either a continuous infusion of vehicle (0.036% dimethyl sulfoxide, n = 8) or apigenin (50 µM, n = 6). In a pilot study, we also tested infusion of S3 (2 µM, n = 3). Fetuses were monitored continuously for 72 h after ischemia. Infusion of apigenin or S3 were both associated with reduced numbers of animals with seizures, total seizure time, and mean seizure burden. S3 was also associated with a reduction in the total number of seizures over the 72 h recovery period. In animals that developed seizures, apigenin was associated with earlier cessation of seizures. However, apigenin or S3 treatment did not alter recovery of electroencephalographic power or spectral edge frequency. These data support that targeting brain hyaluronidase activity with apigenin or S3 may be an effective strategy to reduce perinatal seizures following ischemia. Further studies are required to determine their effects on neurohistological outcomes.


Asunto(s)
Apigenina , Hipoxia-Isquemia Encefálica , Embarazo , Femenino , Ovinos , Animales , Apigenina/farmacología , Apigenina/uso terapéutico , Hialuronoglucosaminidasa , Proyectos Piloto , Convulsiones/tratamiento farmacológico , Feto/patología , Isquemia , Electroencefalografía , Hipoxia-Isquemia Encefálica/patología
3.
Res Sq ; 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37886497

RESUMEN

Centella asiatica (Centella) is a traditional botanical medicine that shows promise in treating dementia based on behavioral alterations seen in animal models of aging and cognitive dysfunction. In order to determine if Centella could similarly improve cognitive function and reduce disease burden in multiple sclerosis (MS), we tested its effects in the neuroinflammatory experimental autoimmune encephalomyelitis (EAE) model of MS. In two independent experiments, C57BL/6J mice were treated following induction of EAE with either a standardized water extract of Centella (CAW) or placebo for 2 weeks. At the dosing schedule and concentrations tested, CAW did not improve behavioral performance, EAE motor disability, or degrees of demyelination. However, CAW-treated mice demonstrated increases in nuclear factor (erythroid-derived 2)-like 2 and other antioxidant response element genes, and increases in mitochondrial respiratory activity. Caw also decreased spinal cord inflammation. Our findings indicate that CAW can increase antioxidant gene expression and mitochondrial respiratory activity in mice with EAE, supporting investigation of the clinical effects of CAW in people with MS.

5.
Res Sq ; 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37131631

RESUMEN

Objective: Relapses in patients with relapsing-remitting multiple sclerosis (RRMS) are typically treated with high-dose corticosteroids including methylprednisolone. However, high-dose corticosteroids are associated with significant adverse effects, can increase the risk for other morbidities, and often do not impact disease course. Multiple mechanisms are proposed to contribute to acute relapses in RRMS patients, including neuroinflammation, fibrin formation and compromised blood vessel barrier function. The protein C activator, E-WE thrombin is a recombinant therapeutic in clinical development for its antithrombotic and cytoprotective properties, including protection of endothelial cell barrier function. In mice, treatment with E-WE thrombin reduced neuroinflammation and extracellular fibrin formation in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). We therefore tested the hypothesis that E-WE thrombin could reduce disease severity in a relapsing-remitting model of EAE. Methods: Female SJL mice were inoculated with proteolipid protein (PLP) peptide and treated with E-WE thrombin (25 µg/kg; iv) or vehicle at onset of detectable disease. In other experiments, E-WE thrombin was compared to methylprednisolone (100 mg/kg; iv) or the combination of both. Results: Compared to vehicle, administration of E-WE thrombin significantly improved disease severity of the initial attack and relapse and delayed onset of relapse as effectively as methylprednisolone. Both methylprednisolone and E-WE thrombin reduced demyelination and immune cell recruitment, and the combination of both treatments had an additive effect. Conclusion: The data presented herein demonstrate that E-WE thrombin is protective in mice with relapsing-remitting EAE, a widely used model of MS. Our data indicate that E-WE thrombin is as effective as high-dose methylprednisolone in improving disease score and may exert additional benefit when administered in combination. Taken together, these data suggest that E-WE thrombin may be an effective alternative to high-dose methylprednisolone for managing acute MS attacks.

6.
ASN Neuro ; 14: 17590914221123138, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36164936

RESUMEN

A major limitation of mechanistic studies in aging brains is the lack of routine methods to robustly visualize and discriminate the cellular distribution of tissue antigens using fluorescent immunohistochemical multi-labeling techniques. Although such approaches are routine in non-aging brains, they are not consistently feasible in the aging brain due to the progressive accumulation of autofluorescent pigments, particularly lipofuscin, which strongly excite and emit over a broad spectral range. Consequently, aging research has relied upon colorimetric antibody techniques, where discrimination of tissue antigens is often challenging. We report the application of a simple, reproducible, and affordable protocol using multispectral light-emitting diodes (mLEDs) exposure for the reduction/elimination of lipofuscin autofluorescence (LAF) in aging brain tissue from humans, non-human primates, and mice. The mLEDs lamp has a broad spectral range that spans from the UV to infrared range and includes spectra in the violet/blue and orange/red. After photo quenching, the LAF level was markedly reduced when the tissue background fluorescence before and after mLEDs exposure was compared (p < 0.0001) across the spectral range. LAF elimination was estimated at 95 ± 1%. This approach permitted robust specific fluorescent immunohistochemical co-visualization of commonly studied antigens in aging brains. We also successfully applied this method to specifically visualize CD44 variant expression in aging human cerebral white matter using RNAscope fluorescent in-situ hybridization. Photo quenching provides an attractive means to accelerate progress in aging research by increasing the number of molecules that can be topologically discriminated by fluorescence detection in brain tissue from normative or pathological aging.


Asunto(s)
Envejecimiento , Encéfalo , Receptores de Hialuranos , Primates , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Encéfalo/metabolismo , Variación Genética , Humanos , Receptores de Hialuranos/genética , Inmunohistoquímica , Hibridación in Situ , Lipofuscina/química , Ratones , Primates/genética
7.
Int J Tryptophan Res ; 15: 11786469221118657, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36004319

RESUMEN

Background: The essential amino acid, tryptophan, is predominantly metabolised through the kynurenine pathway (KP) to generate kynurenine, an aryl-hydrocarbon receptor (AhR) pro-ligand that exerts its effects in a ligand-dependent manner. Interaction between kynurenine and the AhR is an effector mechanism of immunosuppression. We previously found that the KP is involved in multiple sclerosis (MS) disease progression. We postulated that AhR activation by kynurenine might be neuroprotective by encouraging differentiation of Tregs. In this study, we assess both the prophylactic and therapeutic efficiency of kynurenine on disease severity and progression in mice with experimental autoimmune encephalomyelitis (EAE), an MS model. Methods: Myelin oligodendrocyte glycoprotein induced EAE mice (n = 6 per group) were treated with 200 mg/kg L-kynurenine once daily for 10 days beginning on either day 1 of EAE induction (prophylactic) or once they demonstrated motor weakness (therapeutic). Clinical disease severity measured by disease score, time on rotarod, and body weight. Results: The prophylactic kynurenine treatment significantly (P < .0001) prevented the development of a more severe disease course with mice demonstrating diminished relapse rate and improved clinical and behavioural outcomes. However, therapeutic kynurenine did not significantly (P = .4463) decrease the clinical signs until 36 days following induction of disease; after 36 days, it also significantly (P = .0479) reduced disease relapse. Mean body weight measurements only correlated with time on rotarod (r = -.6410; P = .0007) but not clinical scores (r = .1925; P = .3674). Conclusions: Kynurenine ameliorates EAE disease progression prophylactically and reduces relapses therapeutically. Further investigations are needed to elucidate the molecular mechanism explaining the therapeutic role of kynurenine for MS.

8.
Geroscience ; 44(4): 1-14, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35612774

RESUMEN

Patients with Alzheimer's disease (AD) often have cerebral white matter (WM) hyperintensities on MRI and microinfarcts of presumed microvascular origin pathologically. Here, we determined if vasodilator dysfunction of WM-penetrating arterioles is associated with pathologically defined WM injury and disturbances in quantitative MRI-defined WM integrity in patients with mixed microvascular and AD pathology. We analyzed tissues from 28 serially collected human brains from research donors diagnosed with varying degrees of AD neuropathologic change (ADNC) with or without cerebral microinfarcts (mVBI). WM-penetrating and pial surface arteriolar responses to the endothelium-dependent agonist bradykinin were quantified ex vivo with videomicroscopy. Vascular endothelial nitric oxide synthase (eNOS) and NAD(P)H-oxidase (Nox1, 2 and 4 isoforms) expression were measured with quantitative PCR. Glial fibrillary acidic protein (GFAP)-labeled astrocytes were quantified by unbiased stereological approaches in regions adjacent to the sites of WM-penetrating vessel collection. Post-mortem diffusion tensor imaging (DTI) was used to measure mean apparent diffusion coefficient (ADC) and fractional anisotropy (FA), quantitative indices of WM integrity. In contrast to pial surface arterioles, white matter-penetrating arterioles from donors diagnosed with high ADNC and mVBI exhibited a significantly reduced dilation in response to bradykinin when compared to the other groups. Expression of eNOS was reduced, whereas Nox1 expression was increased in WM arterioles in AD and mVBI cases. WM astrocyte density was increased in AD and mVBI, which correlated with a reduced vasodilation in WM arterioles. Moreover, in cases with low ADNC, bradykinin-induced WM arteriole dilation correlated with lower ADC and higher FA values. Comorbid ADNC and mVBI appear to synergistically interact to selectively impair bradykinin-induced vasodilation in WM-penetrating arterioles, which may be related to reduced nitric oxide- and excess reactive oxygen species-mediated vascular endothelial dysfunction. WM arteriole vasodilator dysfunction is associated with WM injury, as supported by reactive astrogliosis and MRI-defined disrupted WM microstructural integrity.


Asunto(s)
Enfermedad de Alzheimer , Sustancia Blanca , Humanos , Enfermedad de Alzheimer/complicaciones , Imagen de Difusión Tensora/métodos , Bradiquinina , Vasodilatadores
9.
Neurobiol Dis ; 158: 105465, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34364975

RESUMEN

Pelizaeus-Merzbacher disease (PMD) is a severe hypomyelinating disorder of the central nervous system (CNS) linked to mutations in the proteolipid protein-1 (PLP1) gene. Although there are multiple animal models of PMD, few of them fully mimic the human disease. Here, we report three spontaneous cases of male neonatal rhesus macaques with the clinical symptoms of hypomyelinating disease, including intention tremors, progressively worsening motor dysfunction, and nystagmus. These animals demonstrated a paucity of CNS myelination accompanied by reactive astrogliosis, and a lack of PLP1 expression throughout white matter. Genetic analysis revealed that these animals were related to one another and that their parents carried a rare, hemizygous missense variant in exon 5 of the PLP1 gene. These animals therefore represent the first reported non-human primate model of PMD, providing a novel and valuable opportunity for preclinical studies that aim to promote myelination in pediatric hypomyelinating diseases.


Asunto(s)
Enfermedad de Pelizaeus-Merzbacher/patología , Animales , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Gliosis , Macaca mulatta , Masculino , Trastornos del Movimiento/genética , Trastornos del Movimiento/fisiopatología , Mutación Missense , Proteína Proteolipídica de la Mielina , Vaina de Mielina/patología , Temblor/genética , Temblor/fisiopatología , Sustancia Blanca
10.
J Neuroimaging ; 31(3): 480-492, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33930224

RESUMEN

BACKGROUND AND PURPOSE: To describe MRI findings in Japanese macaque encephalomyelitis (JME) with emphasis on lesion characteristics, lesion evolution, normal-appearing brain tissue, and similarities to human demyelinating disease. METHODS: MRI data were obtained from 114 Japanese macaques, 30 presenting neurological signs of JME. All animals were screened for presence of T2 -weighted white matter signal hyperintensities; animals with behavioral signs of JME were additionally screened for contrast-enhancing lesions. Whole-brain quantitative T1 maps were collected, and histogram analysis was performed with regression across age to evaluate microstructural changes in normal appearing brain tissue in JME and neurologically normal animals. Quantitative estimates of blood-brain-barrier (BBB) permeability to gadolinium-based-contrast agent (GBCA) were obtained in acute, GBCA-enhancing lesions. Longitudinal imaging data were acquired for 15 JME animals. RESULTS: One hundred and seventy-three focal GBCA-enhancing lesions were identified in 30 animals demonstrating behavioral signs of neurological dysfunction. JME GBCA-enhancing lesions were typically focal and ovoid, demonstrating highest BBB GBCA permeability in the lesion core, similar to acute, focal multiple sclerosis lesions. New GBCA-enhancing lesions arose rapidly from normal-appearing tissue, and BBB permeability remained elevated for weeks. T1 values in normal-appearing tissue were significantly associated with age, but not with sex or disease. CONCLUSIONS: Intense, focal neuroinflammation is a key MRI finding in JME. Several features of JME compare directly to human inflammatory demyelinating diseases. Investigation of JME combined with the development and validation of noninvasive imaging biomarkers offers substantial potential to improve diagnostic specificity and contribute to the understanding of human demyelinating diseases.


Asunto(s)
Barrera Hematoencefálica/fisiología , Encéfalo/diagnóstico por imagen , Encefalomielitis/patología , Encefalomielitis/veterinaria , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Adolescente , Adulto , Animales , Encéfalo/patología , Niño , Preescolar , Medios de Contraste , Encefalomielitis/diagnóstico por imagen , Femenino , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico por imagen , Humanos , Lactante , Inflamación/patología , Macaca fuscata , Imagen por Resonancia Magnética/métodos , Masculino
11.
Nutrients ; 13(2)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540766

RESUMEN

Creatine metabolism is an important component of cellular energy homeostasis. Via the creatine kinase circuit, creatine derived from our diet or synthesized endogenously provides spatial and temporal maintenance of intracellular adenosine triphosphate (ATP) production; this is particularly important for cells with high or fluctuating energy demands. The use of this circuit by tissues within the female reproductive system, as well as the placenta and the developing fetus during pregnancy is apparent throughout the literature, with some studies linking perturbations in creatine metabolism to reduced fertility and poor pregnancy outcomes. Maternal dietary creatine supplementation during pregnancy as a safeguard against hypoxia-induced perinatal injury, particularly that of the brain, has also been widely studied in pre-clinical in vitro and small animal models. However, there is still no consensus on whether creatine is essential for successful reproduction. This review consolidates the available literature on creatine metabolism in female reproduction, pregnancy and the early neonatal period. Creatine metabolism is discussed in relation to cellular bioenergetics and de novo synthesis, as well as the potential to use dietary creatine in a reproductive setting. We highlight the apparent knowledge gaps and the research "road forward" to understand, and then utilize, creatine to improve reproductive health and perinatal outcomes.


Asunto(s)
Creatina/metabolismo , Salud del Lactante , Reproducción/fisiología , Adenosina Trifosfato/biosíntesis , Animales , Encéfalo/embriología , Creatina/administración & dosificación , Dieta , Metabolismo Energético/fisiología , Femenino , Desarrollo Fetal/fisiología , Feto/metabolismo , Genitales Femeninos/metabolismo , Humanos , Recién Nacido , Masculino , Placenta/metabolismo , Embarazo
12.
Ann Clin Transl Neurol ; 8(2): 456-470, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33440071

RESUMEN

OBJECTIVE: To determine whether animals with Japanese macaque encephalomyelitis (JME), a spontaneous demyelinating disease similar to multiple sclerosis (MS), harbor myelin-specific T cells in their central nervous system (CNS) and periphery. METHODS: Mononuclear cells (MNCs) from CNS lesions, cervical lymph nodes (LNs) and peripheral blood of Japanese macaques (JMs) with JME, and cervical LN and blood MNCs from healthy controls or animals with non-JME conditions were analyzed for the presence of myelin-specific T cells and changes in interleukin 17 (IL-17) and interferon gamma (IFNγ) expression. RESULTS: Demyelinating JME lesions contained CD4+ T cells and CD8+ T cells specific to myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP), and/or proteolipid protein (PLP). CD8+ T-cell responses were absent in JME peripheral blood, and in age- and sex-matched controls. However, CD4+ Th1 and Th17 responses were detected in JME peripheral blood versus controls. Cervical LN MNCs from eight of nine JME animals had CD3+ T cells specific for MOG, MBP, and PLP that were not detected in controls. Mapping myelin epitopes revealed a heterogeneity in responses among JME animals. Comparison of myelin antigen sequences with those of JM rhadinovirus (JMRV), which is found in JME lesions, identified six viral open reading frames (ORFs) with similarities to myelin antigen sequences. Overlapping peptides to these JMRV ORFs did not induce IFNγ responses. INTERPRETATIONS: JME possesses an immune-mediated component that involves both CD4+ and CD8+ T cells specific for myelin antigens. JME may shed new light on inflammatory demyelinating disease pathogenesis linked to gamma-herpesvirus infection.


Asunto(s)
Enfermedades Desmielinizantes/diagnóstico por imagen , Enfermedades Desmielinizantes/patología , Encefalomielitis/diagnóstico por imagen , Encefalomielitis/patología , Vaina de Mielina/inmunología , Linfocitos T/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Desmielinizantes/virología , Encefalomielitis/virología , Ensayo de Inmunoadsorción Enzimática , Mapeo Epitopo , Epítopos/genética , Epítopos/inmunología , Femenino , Infecciones por Herpesviridae/inmunología , Interferón gamma/análisis , Interleucina-17/análisis , Macaca fuscata , Masculino , Enfermedades de los Monos , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/inmunología , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/inmunología , Vaina de Mielina/patología , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/inmunología , Rhadinovirus/genética , Rhadinovirus/inmunología
13.
Metab Brain Dis ; 36(3): 407-420, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33411219

RESUMEN

The coagulation cascade and immune system are intricately linked, highly regulated and respond cooperatively in response to injury and infection. Increasingly, evidence of hyper-coagulation has been associated with autoimmune disorders, including multiple sclerosis (MS). The pathophysiology of MS includes immune cell activation and recruitment to the central nervous system (CNS) where they degrade myelin sheaths, leaving neuronal axons exposed to damaging inflammatory mediators. Breakdown of the blood-brain barrier (BBB) facilitates the entry of peripheral immune cells. Evidence of thrombin activity has been identified within the CNS of MS patients and studies using animal models of experimental autoimmune encephalomyelitis (EAE), suggest increased thrombin generation and activity may play a role in the pathogenesis of MS as well as inhibit remyelination processes. Thrombin is a serine protease capable of cleaving multiple substrates, including protease activated receptors (PARs), fibrinogen, and protein C. Cleavage of all three of these substrates represent pathways through which thrombin activity may exert immuno-regulatory effects and regulate permeability of the BBB during MS and EAE. In this review, we summarize evidence that thrombin activity directly, through PARs, and indirectly, through fibrin formation and activation of protein C influences neuro-immune responses associated with MS and EAE pathology.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Esclerosis Múltiple/metabolismo , Trombina/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Humanos
14.
Elife ; 92020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33355532

RESUMEN

Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare and aggressive form of ovarian cancer. SCCOHT tumors have inactivating mutations in SMARCA4 (BRG1), one of the two mutually exclusive ATPases of the SWI/SNF chromatin remodeling complex. To address the role that BRG1 loss plays in SCCOHT tumorigenesis, we performed integrative multi-omic analyses in SCCOHT cell lines +/- BRG1 reexpression. BRG1 reexpression induced a gene and protein signature similar to an epithelial cell and gained chromatin accessibility sites correlated with other epithelial originating TCGA tumors. Gained chromatin accessibility and BRG1 recruited sites were strongly enriched for transcription-factor-binding motifs of AP-1 family members. Furthermore, AP-1 motifs were enriched at the promoters of highly upregulated epithelial genes. Using a dominant-negative AP-1 cell line, we found that both AP-1 DNA-binding activity and BRG1 reexpression are necessary for the gene and protein expression of epithelial genes. Our study demonstrates that BRG1 reexpression drives an epithelial-like gene and protein signature in SCCOHT cells that depends upon by AP-1 activity.


Asunto(s)
Carcinoma de Células Pequeñas/patología , ADN Helicasas/genética , Hipercalcemia/patología , Proteínas Nucleares/genética , Neoplasias Ováricas/metabolismo , Factor de Transcripción AP-1/metabolismo , Factores de Transcripción/genética , Biomarcadores de Tumor/análisis , Carcinoma de Células Pequeñas/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , ADN Helicasas/metabolismo , Femenino , Humanos , Hipercalcemia/genética , Mutación/genética , Proteínas Nucleares/metabolismo , Neoplasias Ováricas/patología , Ovario/metabolismo , Ovario/patología , Factor de Transcripción AP-1/genética , Factores de Transcripción/metabolismo
15.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825309

RESUMEN

Hyaluronic acid (HA) plays a vital role in the extracellular matrix of neural tissues. Originally thought to hydrate tissues and provide mechanical support, it is now clear that HA is also a complex signaling molecule that can regulate cell processes in the developing and adult nervous systems. Signaling properties are determined by molecular weight, bound proteins, and signal transduction through specific receptors. HA signaling regulates processes such as proliferation, differentiation, migration, and process extension in a variety of cell types including neural stem cells, neurons, astrocytes, microglia, and oligodendrocyte progenitors. The synthesis and catabolism of HA and the expression of HA receptors are altered in disease and influence neuroinflammation and disease pathogenesis. This review discusses the roles of HA, its synthesis and breakdown, as well as receptor expression in neurodevelopment, nervous system function and disease.


Asunto(s)
Enfermedades del Sistema Nervioso Central/metabolismo , Receptores de Hialuranos/metabolismo , Hialuronano Sintasas/metabolismo , Ácido Hialurónico/fisiología , Sistema Nervioso/crecimiento & desarrollo , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Humanos , Ácido Hialurónico/química , Hialuronoglucosaminidasa/metabolismo , Fenómenos Fisiológicos del Sistema Nervioso , Células-Madre Neurales/metabolismo
16.
Glia ; 68(2): 263-279, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31490574

RESUMEN

Myelination delay and remyelination failure following insults to the central nervous system (CNS) impede axonal conduction and lead to motor, sensory and cognitive impairments. Both myelination and remyelination are often inhibited or delayed due to the failure of oligodendrocyte progenitor cells (OPCs) to mature into myelinating oligodendrocytes (OLs). Digestion products of the glycosaminoglycan hyaluronan (HA) have been implicated in blocking OPC maturation, but how these digestion products are generated is unclear. We tested the possibility that hyaluronidase activity is directly linked to the inhibition of OPC maturation by developing a novel modified flavonoid that functions as a hyaluronidase inhibitor. This compound, called S3, blocks some but not all hyaluronidases and only inhibits matrix metalloproteinase activity at high concentrations. We find that S3 reverses HA-mediated inhibition of OPC maturation in vitro, an effect that can be overcome by excess recombinant hyaluronidase. Furthermore, we find that hyaluronidase inhibition by S3 accelerates OPC maturation in an in vitro model of perinatal white matter injury. Finally, blocking hyaluronidase activity with S3 promotes functional remyelination in mice with lysolecithin-induced demyelinating corpus callosum lesions. All together, these findings support the notion that hyaluronidase activity originating from OPCs in CNS lesions is sufficient to prevent OPC maturation, which delays myelination or blocks remyelination. These data also indicate that modified flavonoids can act as selective inhibitors of hyaluronidase activity and can promote OPC maturation, making them excellent candidates to accelerate myelination or promote remyelination following perinatal and adult CNS insults.


Asunto(s)
Enfermedades Desmielinizantes/patología , Células Precursoras de Oligodendrocitos/citología , Oligodendroglía/metabolismo , Remielinización/fisiología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Neurogénesis/fisiología , Células Madre/metabolismo
17.
Neurochem Res ; 45(3): 672-683, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31542857

RESUMEN

Although the extra cellular matrix (ECM) comprises a major proportion of the CNS parenchyma, new roles for the ECM in regeneration and repair responses to CNS injury have only recently been appreciated. The ECM undergoes extensive remodeling following injury to the developing or mature CNS in disorders that -include perinatal hypoxic-ischemic cerebral injury, multiple sclerosis and age-related vascular dementia. Here we focus on recently described mechanisms involving hyaluronan (HA), which negatively impact myelin repair after cerebral white matter injury. Injury induced depolymerization of hyaluronan (HA)-a component of the neural ECM-can inhibit myelin repair through the actions of specific sizes of HA fragments. These bioactive fragments selectively block the maturation of late oligodendrocyte progenitors via an immune tolerance-like pathway that suppresses pro-myelination signaling. We highlight emerging new pathophysiological roles of the neural ECM, particularly of those played by HA fragments (HAf) after injury and discuss strategies to promoter repair and regeneration of chronic myelination failure.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Matriz Extracelular/metabolismo , Homeostasis , Ácido Hialurónico/metabolismo , Sustancia Blanca/fisiopatología , Animales , Lesiones Encefálicas/metabolismo , Humanos , Transducción de Señal , Sustancia Blanca/lesiones , Sustancia Blanca/metabolismo
18.
Am J Med Genet A ; 179(6): 1098-1106, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30908866

RESUMEN

The neurofibromatoses are inherited, tumor suppressor disorders that are characterized by multiple, benign peripheral nerve sheath tumors and other nervous system tumors. Each disease is associated with a distinct genetic mutation and with a different pathogenesis and clinical course. Neurofibromatosis 1 (NF1) is common and epitomized by multiple neurofibromas with widespread complications. NF2 and schwannomatosis are rare diseases that are typified by multiple schwannomas that are particularly painful in people with schwannomatosis. Since 1985, the Children's Tumor Foundation (formerly the National Neurofibromatosis Foundation) has hosted an international Neurofibromatosis Conference, bringing together international participants who are focused on NF research and clinical care. The 2017 Conference, held in Washington, DC, was among the largest gatherings of NF researchers to date and included presentations from clinicians and basic scientists, highlighting new data regarding the molecular and cellular mechanisms underlying each of these diseases as well as results from clinical studies and clinical trials. This article summarizes the findings presented at the meeting and represents the current state-of-the art for NF research.


Asunto(s)
Neurilemoma/etiología , Neurofibromatosis/etiología , Neurofibromatosis 1/etiología , Neurofibromatosis 2/etiología , Neoplasias Cutáneas/etiología , Animales , Susceptibilidad a Enfermedades , Humanos , Neurilemoma/diagnóstico , Neurilemoma/metabolismo , Neurilemoma/terapia , Neurofibromatosis/diagnóstico , Neurofibromatosis/metabolismo , Neurofibromatosis/terapia , Neurofibromatosis 1/diagnóstico , Neurofibromatosis 1/metabolismo , Neurofibromatosis 1/terapia , Neurofibromatosis 2/diagnóstico , Neurofibromatosis 2/metabolismo , Neurofibromatosis 2/terapia , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/terapia
19.
Matrix Biol ; 78-79: 272-283, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29408010

RESUMEN

Adult neurogenesis in mammals is a tightly regulated process where neural stem cells (NSCs), especially in the subgranular zone (SGZ) of the hippocampal dentate gyrus, proliferate and differentiate into new neurons that form new circuits or integrate into old circuits involved in episodic memory, pattern discrimination, and emotional responses. Recent evidence suggests that changes in the hyaluronan (HA)-based extracellular matrix of the SGZ may regulate neurogenesis by controlling NSC proliferation and early steps in neuronal differentiation. These studies raise the intriguing possibility that perturbations in this matrix, including HA accumulation with aging, could impact adult neurogenesis and cognitive functions, and that alterations to this matrix could be beneficial following insults to the central nervous system that impact hippocampal functions.


Asunto(s)
Envejecimiento/metabolismo , Ácido Hialurónico/metabolismo , Células-Madre Neurales/citología , Neurogénesis , Envejecimiento/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Cognición , Matriz Extracelular/metabolismo , Humanos , Mamíferos , Células-Madre Neurales/metabolismo , Nicho de Células Madre
20.
Neurobiol Dis ; 119: 65-78, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30048804

RESUMEN

We have identified a natural Japanese macaque model of the childhood neurodegenerative disorder neuronal ceroid lipofuscinosis, commonly known as Batten Disease, caused by a homozygous frameshift mutation in the CLN7 gene (CLN7-/-). Affected macaques display progressive neurological deficits including visual impairment, tremor, incoordination, ataxia and impaired balance. Imaging, functional and pathological studies revealed that CLN7-/- macaques have reduced retinal thickness and retinal function early in disease, followed by profound cerebral and cerebellar atrophy that progresses over a five to six-year disease course. Histological analyses showed an accumulation of cerebral, cerebellar and cardiac storage material as well as degeneration of neurons, white matter fragmentation and reactive gliosis throughout the brain of affected animals. This novel CLN7-/- macaque model recapitulates key behavioral and neuropathological features of human Batten Disease and provides novel insights into the pathophysiology linked to CLN7 mutations. These animals will be invaluable for evaluating promising therapeutic strategies for this devastating disease.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de Transporte de Membrana/genética , Lipofuscinosis Ceroideas Neuronales/diagnóstico por imagen , Lipofuscinosis Ceroideas Neuronales/genética , Animales , Femenino , Técnicas de Inactivación de Genes/métodos , Locomoción/fisiología , Macaca , Masculino , Mutación Missense/genética , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Equilibrio Postural/fisiología , Primates , Trastornos de la Visión/diagnóstico por imagen , Trastornos de la Visión/genética , Trastornos de la Visión/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...