Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 975 Pt 1: 435-446, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28849473

RESUMEN

Taurine forms a conjugate in the mitochondria with a uridine residue in the wobble position of tRNALeu(UUR). The resulting product, 5-taurinomethyluridine tRNALeu(UUR), increases the interaction between the UUG codon and AAU anticodon of tRNALeu(UUR), thereby improving the decoding of the UUG codon. We have shown that the protein most affected by the taurine conjugation product is ND6, which is a subunit of complex I of the respiratory chain. Thus, taurine deficiency exhibits reduced respiratory chain function. Based on these findings, we proposed that the taurine deficient heart is energy deficient. To test this idea, hearts were perfused with buffer containing acetate and glucose as substrates. The utilization of both substrates, as well as the utilization of endogenous lipids, was significantly reduced in the taurine deficient heart. This led to a 25% decrease in ATP production, an effect primarily caused by diminished aerobic metabolism and respiratory function. In addition, inefficient oxidative phosphorylation causes a further decrease in ATP generation. The data support the idea that reductions in energy metabolism, including oxidative phosphorylation, ATP generation and high energy phosphate content, contribute to the severity of the cardiomyopathy. The findings are also consistent with the hypothesis that taurine deficiency and reduced myocardial energy content increases mortality of the taurine deficient, failing heart. The clinical implications of these findings are addressed.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Corazón/efectos de los fármacos , Miocardio/metabolismo , Taurina/deficiencia , Animales , Metabolismo Energético/fisiología , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar
2.
Mol Cell Biochem ; 416(1-2): 11-22, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27023909

RESUMEN

Hyper-beta-alaninemia is a rare metabolic condition that results in elevated plasma and urinary ß-alanine levels and is characterized by neurotoxicity, hypotonia, and respiratory distress. It has been proposed that at least some of the symptoms are caused by oxidative stress; however, only limited information is available on the mechanism of reactive oxygen species generation. The present study examines the hypothesis that ß-alanine reduces cellular levels of taurine, which are required for normal respiratory chain function; cellular taurine depletion is known to reduce respiratory function and elevate mitochondrial superoxide generation. To test the taurine hypothesis, isolated neonatal rat cardiomyocytes and mouse embryonic fibroblasts were incubated with medium lacking or containing ß-alanine. ß-alanine treatment led to mitochondrial superoxide accumulation in conjunction with a decrease in oxygen consumption. The defect in ß-alanine-mediated respiratory function was detected in permeabilized cells exposed to glutamate/malate but not in cells utilizing succinate, suggesting that ß-alanine leads to impaired complex I activity. Taurine treatment limited mitochondrial superoxide generation, supporting a role for taurine in maintaining complex I activity. Also affected by taurine is mitochondrial morphology, as ß-alanine-treated fibroblasts undergo fragmentation, a sign of unhealthy mitochondria that is reversed by taurine treatment. If left unaltered, ß-alanine-treated fibroblasts also undergo mitochondrial apoptosis, as evidenced by activation of caspases 3 and 9 and the initiation of the mitochondrial permeability transition. Together, these data show that ß-alanine mediates changes that reduce ATP generation and enhance oxidative stress, factors that contribute to heart failure.


Asunto(s)
Trastornos de Somnolencia Excesiva/metabolismo , Mitocondrias Cardíacas/metabolismo , Enfermedades Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Convulsiones/metabolismo , beta-Alanina/metabolismo , beta-Alanina/toxicidad , Animales , Trastornos de Somnolencia Excesiva/genética , Trastornos de Somnolencia Excesiva/patología , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Ratones , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Miocitos Cardíacos/patología , Consumo de Oxígeno , Ratas , Convulsiones/genética , Convulsiones/patología , Taurina/biosíntesis , Taurina/genética , beta-Alanina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...