Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Cell Biol ; 162: 69-87, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33707023

RESUMEN

The potential for increasing the application of Correlative Light Electron Microscopy (CLEM) technologies in life science research is hindered by the lack of suitable molecular probes that are emissive, photostable, and scatter electrons well. Most brightly fluorescent organic molecules are intrinsically poor electron-scatterers, while multi-metallic compounds scatter electrons well but are usually non-luminescent. Thus, the goal of CLEM to image the same object of interest on the continuous scale from hundreds of microns to nanometers remains a major challenge partially due to requirements for a single probe to be suitable for light (LM) and electron microscopy (EM). Some of the main CLEM probes, based on gold nanoparticles appended with fluorophores and quantum dots (QD) have presented significant drawbacks. Here we present an Iridium-based luminescent metal complex (Ir complex 1) as a probe and describe how we have developed a CLEM workflow based on such metal complexes.


Asunto(s)
Complejos de Coordinación , Nanopartículas del Metal , Electrones , Oro , Microscopía Electrónica , Microscopía Fluorescente , Flujo de Trabajo
2.
Nat Commun ; 11(1): 5641, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159061

RESUMEN

Single-molecule Förster Resonance Energy Transfer (smFRET) is a powerful technique capable of resolving both relative and absolute distances within and between structurally dynamic biomolecules. High instrument costs, and a lack of open-source hardware and acquisition software have limited smFRET's broad application by non-specialists. Here, we present the smfBox, a cost-effective confocal smFRET platform, providing detailed build instructions, open-source acquisition software, and full validation, thereby democratising smFRET for the wider scientific community.

4.
RSC Adv ; 8(18): 9670-9676, 2018 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-31497293

RESUMEN

A novel diiridium complex [(N^C^N)2Ir(bis-N^C)Ir(N^C^N)2Cl]PF6 (N^C^N = 2-[3-tert-butyl-5-(pyridin-2-yl)phenyl]pyridine; bis-N^C = 3,6-bis(4-tert-butylphenyl)pyridazine) was designed, synthesised and characterised. The key feature of the complex is the bridging pyridazine ligand which brings two cyclometallated Ir(iii) metal centres close together so that Cl also acts as a bridging ligand leading to a cationic complex. The ionic nature of the complex offers a possibility of improving solubility in water. The complex displays broad emission in the red region (λ em = 520-720 nm, τ = 1.89 µs, Φ em = 62% in degassed acetonitrile). Cellular assays by multiphoton (λ ex = 800 nm) and confocal (λ ex = 405 nm) microscopy demonstrate that the complex enters cells and localises to the mitochondria, demonstrating cell permeability. Further, an appreciable yield of singlet oxygen generation (Φ Δ = 0.45, direct method, by 1O2 NIR emission in air equilibrated acetonitrile) suggests a possible future use in photodynamic therapy. However, the complex has relatively high dark toxicity (LD50 = 4.46 µM), which will likely hinder its clinical application. Despite this toxicity, the broad emission spectrum of the complex and high emission yield observed suggest a possible future use of this class of compound in emission bioimaging. The presence of two heavy atoms also increases the scattering of electrons, supporting potential future applications as a dual fluorescence and electron microscopy probe.

5.
Inorg Chem ; 56(24): 15259-15270, 2017 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-29199820

RESUMEN

We describe an Ir(III)-based small-molecule, multimodal probe for use in both light and electron microscopy. The direct correlation of data between light- and electron-microscopy-based imaging to investigate cellular processes at the ultrastructure level is a current challenge, requiring both dyes that must be brightly emissive for luminescence imaging and scatter electrons to give contrast for electron microscopy, at a single working concentration suitable for both methods. Here we describe the use of Ir(III) complexes as probes that provide excellent image contrast and quality for both luminescence and electron microscopy imaging, at the same working concentration. Significant contrast enhancement of cellular mitochondria was observed in transmission electron microscopy imaging, with and without the use of typical contrast agents. The specificity for cellular mitochondria was also confirmed with MitoTracker using confocal and 3D-structured illumination microscopy. These phosphorescent dyes are part of a very exclusive group of transition-metal complexes that enable imaging beyond the diffraction limit. Triplet excited-state phosphorescence was also utilized to probe the O2 concentration at the mitochondria in vitro, using lifetime mapping techniques.


Asunto(s)
Complejos de Coordinación/química , Iridio/química , Sustancias Luminiscentes/química , Mitocondrias/ultraestructura , Oxígeno/análisis , Células HeLa , Humanos , Microscopía Confocal/métodos , Microscopía Electrónica de Transmisión/métodos , Mitocondrias/química , Imagen Óptica/métodos
6.
Org Biomol Chem ; 14(46): 10953-10962, 2016 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-27819376

RESUMEN

Simple haloaldehydes, including enolisable aldehydes, were found to be suitable for the formation of cyclic products by cascade (domino) condensation, cyclisation, dipolar cycloaddition chemistry. This multi-component reaction approach to heterocyclic compounds was explored by using hydroxylamine, a selection of aldehydes, and a selection of activated dipolarophiles. Initial condensation gives intermediate oximes that undergo cyclisation with displacement of halide to give intermediate nitrones; these nitrones undergo in situ intermolecular dipolar cycloaddition reactions to give isoxazolidines. The cycloadducts from using dimethyl fumarate were treated with zinc/acetic acid to give lactam products and this provides an easy way to prepare pyrrolizinones, indolizinones, and pyrrolo[2,1-a]isoquinolinones. The chemistry is illustrated with a very short synthesis of the pyrrolizidine alkaloid macronecine and a formal synthesis of petasinecine.


Asunto(s)
Óxidos de Nitrógeno/química , Oximas/química , Oximas/síntesis química , Alquenos/química , Ciclización , Reacción de Cicloadición
7.
Inorg Chem ; 55(11): 5623-33, 2016 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-27219675

RESUMEN

Luminescent, mixed metal d-f complexes have the potential to be used for dual (magnetic resonance imaging (MRI) and luminescence) in vivo imaging. Here, we present dinuclear and trinuclear d-f complexes, comprising a rigid framework linking a luminescent Ir center to one (Ir·Ln) or two (Ir·Ln2) lanthanide metal centers (where Ln = Eu(III) and Gd(III), respectively). A range of physical, spectroscopic, and imaging-based properties including relaxivity arising from the Gd(III) units and the occurrence of Ir(III) → Eu(III) photoinduced energy-transfer are presented. The rigidity imposed by the ligand facilitates high relaxivities for the Gd(III) complexes, while the luminescence from the Ir(III) and Eu(III) centers provide luminescence imaging capabilities. Dinuclear (Ir·Ln) complexes performed best in cellular studies, exhibiting good solubility in aqueous solutions, low toxicity after 4 and 18 h, respectively, and punctate lysosomal staining. We also demonstrate the first example of oxygen sensing in fixed cells using the dyad Ir·Gd, via two-photon phosphorescence lifetime imaging (PLIM).


Asunto(s)
Iridio/química , Lantano/química , Sondas Moleculares , Oxígeno/análisis , Línea Celular Tumoral , Humanos , Luminiscencia , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...