Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Commun ; 6(3): fcae118, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707708

RESUMEN

Graphical abstract.

2.
Epilepsia ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758110

RESUMEN

OBJECTIVE: Animal and human studies have shown that the seizure-generating region is vastly dependent on distant neuronal hubs that can decrease duration and propagation of ongoing seizures. However, we still lack a comprehensive understanding of the impact of distant brain areas on specific interictal and ictal epileptic activities (e.g., isolated spikes, spike trains, seizures). Such knowledge is critically needed, because all kinds of epileptic activities are not equivalent in terms of clinical expression and impact on the progression of the disease. METHODS: We used surface high-density electroencephalography and multisite intracortical recordings, combined with pharmacological silencing of specific brain regions in the well-known kainate mouse model of temporal lobe epilepsy. We tested the impact of selective regional silencing on the generation of epileptic activities within a continuum ranging from very transient to more sustained and long-lasting discharges reminiscent of seizures. RESULTS: Silencing the contralateral hippocampus completely suppresses sustained ictal activities in the focus, as efficiently as silencing the focus itself, but whereas focus silencing abolishes all focus activities, contralateral silencing fails to control transient spikes. In parallel, we observed that sustained focus epileptiform discharges in the focus are preceded by contralateral firing and more strongly phase-locked to bihippocampal delta/theta oscillations than transient spiking activities, reinforcing the presumed dominant role of the contralateral hippocampus in promoting long-lasting, but not transient, epileptic activities. SIGNIFICANCE: Altogether, our work provides suggestive evidence that the contralateral hippocampus is necessary for the interictal to ictal state transition and proposes that crosstalk between contralateral neuronal activity and ipsilateral delta/theta oscillation could be a candidate mechanism underlying the progression from short- to long-lasting epileptic activities.

3.
Neurobiol Dis ; 190: 106382, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38114050

RESUMEN

Studying the development of brain network disruptions in epilepsy is challenged by the paucity of data before epilepsy onset. Here, we used the unilateral, kainate mouse model of hippocampal epilepsy to investigate brain network changes before and after epilepsy onset and their stability across time. Using 32 epicranial electrodes distributed over the mouse hemispheres, we analyzed EEG epochs free from epileptic activity in 15 animals before and 28 days after hippocampal injection (group 1) and in 20 animals on two consecutive days (d28 and d29, group 2). Statistical dependencies between electrodes were characterized with the debiased-weighted phase lag index. We analyzed: a) graph metric changes from baseline to chronic stage (d28) in group 1; b) their reliability across d28 and d29, in group 2; c) their correlation with epileptic activity (EA: seizure, spike and fast-ripple rates), averaged over d28 and d29, in group 2. During the chronic stage, intra-hemispheric connections of the non-injected hemisphere strengthened, yielding an asymmetrical network in low (4-8 Hz) and high theta (8-12 Hz) bands. The contralateral hemisphere also became more integrated and segregated within the high theta band. Both network topology and EEG markers of EA were stable over consecutive days but not correlated with each other. Altogether, we show reproducible large-scale network modifications after the development of focal epilepsy. These modifications are mostly specific to the non-injected hemisphere. The absence of correlation with epileptic activity does not allow to specifically ascribe these network changes to mechanisms supporting EA or rather compensatory inhibition but supports the notion that epilepsy extends beyond the sole repetition of EA and impacts network that might not be involved in EA generation.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Ratones , Animales , Reproducibilidad de los Resultados , Encéfalo , Gravedad del Paciente , Electroencefalografía
4.
Nat Commun ; 14(1): 7397, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036557

RESUMEN

Slow waves of neuronal activity are a fundamental component of sleep that are proposed to have homeostatic and restorative functions. Despite this, their interaction with pathology is unclear and there is only indirect evidence of their presence during wakefulness. Using intracortical recordings from the temporal lobe of 25 patients with epilepsy, we demonstrate the existence of local wake slow waves (LoWS) with key features of sleep slow waves, including a down-state of neuronal firing. Consistent with a reduction in neuronal activity, LoWS were associated with slowed cognitive processing. However, we also found that LoWS showed signatures of a homeostatic relationship with interictal epileptiform discharges (IEDs): exhibiting progressive adaptation during the build-up of network excitability before an IED and reducing the impact of subsequent IEDs on network excitability. We therefore propose an epilepsy homeostasis hypothesis: that slow waves in epilepsy reduce aberrant activity at the price of transient cognitive impairment.


Asunto(s)
Epilepsias Parciales , Epilepsia , Humanos , Electroencefalografía , Sueño/fisiología , Cognición
5.
Brain Commun ; 5(3): fcad161, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37292455

RESUMEN

Sleep can modulate epileptic activities, but our knowledge of sleep perturbation by epilepsy remains sparse. Interestingly, epilepsy and sleep both present with defining electrophysiological features in the form of specific graphoelements on EEG. This raises the possibility to identify, within ongoing EEG activity, how epilepsy impacts and disrupts sleep. Here, we asked whether the presence of a lateralized epileptic focus interferes with the expression of the dominant electrophysiological hallmarks of sleep: slow oscillations, slow waves and spindles. To this aim, we conducted a cross-sectional study and analysed sleep recordings with surface EEG from 69 patients with focal epilepsy (age range at EEG: 17-61 years, 29 females, 34 left focal epilepsy). Comparing patients with left and right focal epilepsy, we assessed inter-hemispheric asymmetry of sleep slow oscillations power (delta range, 0.5-4 Hz); sleep slow wave density; amplitude, duration and slope; and spindle density, amplitude, duration as well as locking to slow oscillations. We found significantly different asymmetries in slow oscillation power (P < 0.01); slow wave amplitude (P < 0.05) and slope (P < 0.01); and spindle density (P < 0.0001) and amplitude (P < 0.05). To confirm that these population-based differences reflect actual patient-by-patient differences, we then tested whether asymmetry of sleep features can classify laterality of the epileptic focus using a decision tree and a 5-fold cross-validation. We show that classification accuracy is above chance level (accuracy of 65%, standard deviation: 5%) and significantly outperforms a classification based on a randomization of epileptic lateralization (randomization data accuracy: 50%, standard deviation 7%, unpaired t-test, P < 0.0001). Importantly, we show that classification of epileptic lateralization by the canonical epileptic biomarker, i.e. interictal epileptiform discharges, improves slightly but significantly when combined with electrophysiological hallmarks of physiological sleep (from 75% to 77%, P < 0.0001, one-way ANOVA + Sidak's multiple comparisons test). Together, we establish that epilepsy is associated with inter-hemispheric perturbation of sleep-related activities and provide an in-depth multi-dimensional profile of the main sleep electrophysiological signatures in a large cohort of patients with focal epilepsy. We provide converging evidence that the underlying epileptic process interacts with the expression of sleep markers, in addition to triggering well-known pathological activities, such as interictal epileptiform discharges.

6.
Neurobiol Dis ; 175: 105928, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36403895

RESUMEN

Epileptiform spikes are used to localize epileptogenic brain tissue. The mechanisms that spontaneously trigger epileptiform discharges are not yet elucidated. Pathological fast ripple (FR, 200-600 Hz) are biomarkers of epileptogenic brain, and we postulated that FR network interactions are involved in generating epileptiform spikes. Using macroelectrode stereo intracranial EEG (iEEG) recordings from a cohort of 46 patients we found that, in the seizure onset zone (SOZ), propagating FR were more often followed by an epileptiform spike, as compared with non-propagating FR (p < 0.05). Propagating FR had a distinct frequency and larger power (p < 1e-10) and were more strongly phase coupled to the peak of iEEG delta oscillation, which likely correspond with the DOWN states during non-REM sleep (p < 1e-8), than non-propagating FR. While FR propagation was rare, all FR occurred with the highest probability within +/- 400 msec of epileptiform spikes with superimposed high-frequency oscillations (p < 0.05). Thus, a sub-population of epileptiform spikes in the SOZ, are preceded by propagating FR that are coordinated by the DOWN state during non-REM sleep.


Asunto(s)
Ondas Encefálicas , Epilepsias Parciales , Humanos , Epilepsias Parciales/diagnóstico , Electrocorticografía , Encéfalo , Electroencefalografía
8.
Front Syst Neurosci ; 15: 620338, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744643

RESUMEN

The detection of causal effects among simultaneous observations provides knowledge about the underlying network, and is a topic of interests in many scientific areas. Over the years different causality measures have been developed, each with their own advantages and disadvantages. However, an extensive evaluation study is missing. In this work we consider some of the best-known causality measures i.e., cross-correlation, (conditional) Granger causality index (CGCI), partial directed coherence (PDC), directed transfer function (DTF), and partial mutual information on mixed embedding (PMIME). To correct for noise-related spurious connections, each measure (except PMIME) is tested for statistical significance based on surrogate data. The performance of the causality metrics is evaluated on a set of simulation models with distinct characteristics, to assess how well they work in- as well as outside of their "comfort zone." PDC and DTF perform best on systems with frequency-specific connections, while PMIME is the only one able to detect non-linear interactions. The varying performance depending on the system characteristics warrants the use of multiple measures and comparing their results to avoid errors. Furthermore, lags between coupled variables are inherent to real-world systems and could hold essential information on the network dynamics. They are however often not taken into account and we lack proper tools to estimate them. We propose three new methods for lag estimation in multivariate time series, based on autoregressive modelling and information theory. One of the autoregressive methods and the one based on information theory were able to reliably identify the correct lag value in different simulated systems. However, only the latter was able to maintain its performance in the case of non-linear interactions. As a clinical application, the same methods are also applied on an intracranial recording of an epileptic seizure. The combined knowledge from the causality measures and insights from the simulations, on how these measures perform under different circumstances and when to use which one, allow us to recreate a plausible network of the seizure propagation that supports previous observations of desynchronisation and synchronisation during seizure progression. The lag estimation results show absence of a relationship between connectivity strength and estimated lag values, which contradicts the line of thinking in connectivity shaped by the neuron doctrine.

9.
Neuroimage Clin ; 32: 102838, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34624636

RESUMEN

The success of stereoelectroencephalographic (SEEG) investigations depends crucially on the hypotheses on the putative location of the seizure onset zone. This information is derived from non-invasive data either based on visual analysis or advanced source localization algorithms. While source localization applied to interictal spikes recorded on scalp is the classical method, it does not provide unequivocal information regarding the seizure onset zone. Raw ictal activity contains a mixture of signals originating from several regions of the brain as well as EMG artifacts, hampering direct input to the source localization algorithms. We therefore introduce a methodology that disentangles the various sources contributing to the scalp ictal activity using independent component analysis and uses equivalent current dipole localization as putative locus of ictal sources. We validated the results of our analysis pipeline by performing long-term simultaneous scalp - intracerebral (SEEG) recordings in 14 patients and analyzing the wavelet coherence between the independent component encoding the ictal discharge and the SEEG signals in 8 patients passing the inclusion criteria. Our results show that invasively recorded ictal onset patterns, including low-voltage fast activity, can be captured by the independent component analysis of scalp EEG. The visibility of the ictal activity strongly depends on the depth of the sources. The equivalent current dipole localization can point to the seizure onset zone (SOZ) with an accuracy that can be as high as 10 mm for superficially located sources, that gradually decreases for deeper seizure generators, averaging at 47 mm in the 8 analyzed patients. Independent component analysis is therefore shown to have a promising SOZ localizing value, indicating whether the seizure onset zone is neocortical, and its approximate location, or located in mesial structures. That may contribute to a better crafting of the hypotheses used as basis of the stereo-EEG implantations.


Asunto(s)
Epilepsias Parciales , Cuero Cabelludo , Encéfalo/diagnóstico por imagen , Electroencefalografía , Humanos , Convulsiones
10.
Epilepsia ; 62(10): 2357-2371, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34338315

RESUMEN

OBJECTIVE: In patients with epilepsy, interictal epileptic discharges are a diagnostic hallmark of epilepsy and represent abnormal, so-called "irritative" activity that disrupts normal cognitive functions. Despite their clinical relevance, their mechanisms of generation remain poorly understood. It is assumed that brain activity switches abruptly, unpredictably, and supposedly randomly to these epileptic transients. We aim to study the period preceding these epileptic discharges, to extract potential proepileptogenic mechanisms supporting their expression. METHODS: We used multisite intracortical recordings from patients who underwent intracranial monitoring for refractory epilepsy, the majority of whom had a mesial temporal lobe seizure onset zone. Our objective was to evaluate the existence of proepileptogenic windows before interictal epileptic discharges. We tested whether the amplitude and phase synchronization of slow oscillations (.5-4 Hz and 4-7 Hz) increase before epileptic discharges and whether the latter are phase-locked to slow oscillations. Then, we tested whether the phase-locking of neuronal activity (assessed by high-gamma activity, 60-160 Hz) to slow oscillations increases before epileptic discharges to provide a potential mechanism linking slow oscillations to interictal activities. RESULTS: Changes in widespread slow oscillations anticipate upcoming epileptic discharges. The network extends beyond the irritative zone, but the increase in amplitude and phase synchronization is rather specific to the irritative zone. In contrast, epileptic discharges are phase-locked to widespread slow oscillations and the degree of phase-locking tends to be higher outside the irritative zone. Then, within the irritative zone only, we observe an increased coupling between slow oscillations and neuronal discharges before epileptic discharges. SIGNIFICANCE: Our results show that epileptic discharges occur during vulnerable time windows set up by a specific phase of slow oscillations. The specificity of these permissive windows is further reinforced by the increased coupling of neuronal activity to slow oscillations. These findings contribute to our understanding of epilepsy as a distributed oscillopathy and open avenues for future neuromodulation strategies aiming at disrupting proepileptic mechanisms.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Susceptibilidad a Enfermedades , Electroencefalografía/métodos , Humanos , Neuronas
11.
Front Neurol ; 10: 1033, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31608007

RESUMEN

Brain functions do not arise from isolated brain regions, but from interactions in widespread networks necessary for both normal and pathological conditions. These Intrinsic Connectivity Networks (ICNs) support cognitive processes such as language, memory, or executive functions, but can be disrupted by epileptic activity. Simultaneous EEG-fMRI can help explore the hemodynamic changes associated with focal or generalized epileptic discharges, thus providing information about both transient and non-transient impairment of cognitive networks related to spatio-temporal overlap with epileptic activity. In the following review, we discuss the importance of interictal discharges and their impact on cognition in different epilepsy syndromes. We explore the cognitive impact of interictal activity in both animal models and human connectivity networks in order to confirm that this effect could have a possible clinical impact for prescribing medication and characterizing post-surgical outcome. Future work is needed to further investigate electrophysiological changes, such as amplitude/latency of single evoked responses or spontaneous epileptic activity in either scalp or intracranial EEG and determine its relative change in hemodynamic response with subsequent network modifications.

12.
eNeuro ; 6(4)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31346002

RESUMEN

Large-scale brain networks are increasingly recognized as important for the generation of seizures in epilepsy. However, how a network evolves from a healthy state through the process of epileptogenesis remains unclear. To address this question, here, we study longitudinal epicranial background EEG recordings (30 electrodes, EEG free from epileptiform activity) of a mouse model of mesial temporal lobe epilepsy. We analyze functional connectivity networks and observe that over the time course of epileptogenesis the networks become increasingly asymmetric. Furthermore, computational modelling reveals that a set of nodes, located outside of the region of initial insult, emerges as particularly important for the network dynamics. These findings are consistent with experimental observations, thus demonstrating that ictogenic mechanisms can be revealed on the EEG, that computational models can be used to monitor unfolding epileptogenesis and that both the primary focus and epileptic network play a role in epileptogenesis.


Asunto(s)
Encéfalo/fisiopatología , Epilepsia del Lóbulo Temporal/fisiopatología , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Masculino , Ratones Endogámicos C57BL , Modelos Neurológicos , Vías Nerviosas/fisiopatología , Factores de Tiempo
13.
Rev Med Suisse ; 15(648): 857-861, 2019 Apr 24.
Artículo en Francés | MEDLINE | ID: mdl-31021570

RESUMEN

New antiepileptic drugs are regularly approved for treatment and offer large therapeutic opportunities. Efficacy of these drugs is relatively similar on-label with different mechanisms to be combined for a synergic effect. Treatments such as cannabidiol have benefitted from large media coverage despite limited clinical evidence so far. The objective of antiepileptic drugs is to stop the recurrence of epileptic seizures with as few adverse events as possible. When confronted to a difficult-to-treat epilepsy, referral to a specialised centre is strongly advised. The aim is to confirm that the diagnosis is correct, that the treatment is well adapted (indication, pharmacokinetic and compliance) and to evaluate the indication for non-pharmacological treatments such as epilepsy surgery.


De nouveaux traitements médicamenteux antiépileptiques arrivent régulièrement sur le marché, et permettent d'offrir une large palette thérapeutique. Les efficacités sont relativement similaires dans les indications approuvées, avec différents mécanismes à utiliser de façon synergique. Certains traitements, comme le cannabidiol, ont bénéficié d'un succès médiatique dépassant l'évidence clinique à ce jour. L'objectif du traitement est l'arrêt des crises d'épilepsie d'une part, et l'absence d'effet secondaire invalidant de l'autre. Devant une situation d'épilepsie difficile à traiter, une évaluation dans un centre spécialisé est indiquée. Le but est de confirmer le diagnostic d'épilepsie, vérifier l'adéquation du traitement (indication, pharmacocinétique, compliance) et évaluer l'indication aux traitements non pharmacologiques, comme une chirurgie de l'épilepsie.


Asunto(s)
Anticonvulsivantes , Epilepsia , Anticonvulsivantes/uso terapéutico , Epilepsia/complicaciones , Epilepsia/tratamiento farmacológico , Humanos , Recurrencia , Convulsiones/tratamiento farmacológico , Convulsiones/etiología
14.
eNeuro ; 6(1)2019.
Artículo en Inglés | MEDLINE | ID: mdl-30783615

RESUMEN

Large-scale slow oscillations allow the integration of neuronal activity across brain regions during sensory or cognitive processing. However, evidence that this form of coding also holds for pathological networks, such as for distributed networks in epileptic disorders, does not yet exist. Here, we show in a mouse model of unilateral hippocampal epilepsy that epileptic fast ripples generated in the neocortex distant from the primary focus occur during transient trains of interictal epileptic discharges. During these epileptic paroxysms, local phase-locking of neuronal firing and a phase-amplitude coupling of the epileptic discharges over a slow oscillation at 3-5 Hz are detected. Furthermore, the buildup of the slow oscillation begins in the bihippocampal network that includes the focus, which synchronizes and drives the activity across the large-scale epileptic network into the frontal cortex. This study provides the first functional description of the emergence of neocortical fast ripples in hippocampal epilepsy and shows that cross-frequency coupling might be a fundamental mechanism underlying the spreading of epileptic activity.


Asunto(s)
Ondas Encefálicas/fisiología , Epilepsia del Lóbulo Temporal/fisiopatología , Neocórtex/fisiopatología , Potenciales de Acción , Animales , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Neuronas/fisiología
15.
J Neurosci ; 38(15): 3776-3791, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29555850

RESUMEN

Most research on focal epilepsy focuses on mechanisms of seizure generation in the primary epileptic focus (EF). However, neurological deficits that are not directly linked to seizure activity and that may persist after focus removal are frequent. The recruitment of remote brain regions of an epileptic network (EN) is recognized as a possible cause, but a profound lack of experimental evidence exists concerning their recruitment and the type of pathological activities they exhibit. We studied the development of epileptic activities at the large-scale in male mice of the kainate model of unilateral temporal lobe epilepsy using high-density surface EEG and multiple-site intracortical recordings. We show that, along with focal spikes and fast ripples that remain localized to the injected hippocampus (i.e., the EF), a subpopulation of spikes that propagate across the brain progressively emerges even before the expression of seizures. The spatiotemporal propagation of these generalized spikes (GSs) is highly stable within and across animals, defining a large-scale EN comprising both hippocampal regions and frontal cortices. Interestingly, GSs are often concomitant with muscular twitches. In addition, while fast ripples are, as expected, highly frequent in the EF, they also emerge in remote cortical regions and in particular in frontal regions where GSs propagate. Finally, we demonstrate that these remote interictal activities are dependent on the focus in the early phase of the disease but continue to be expressed after focus silencing at later stages. Our results provide evidence that neuronal networks outside the initial focus are progressively altered during epileptogenesis.SIGNIFICANCE STATEMENT It has long been held that the epileptic focus is responsible for triggering seizures and driving interictal activities. However, focal epilepsies are associated with heterogeneous symptoms, calling into question the concept of a strictly focal disease. Using the mouse model of hippocampal sclerosis, this work demonstrates that focal epilepsy leads to the development of pathological activities specific to the epileptic condition, notably fast ripples, that appear outside of the primary epileptic focus. Whereas these activities are dependent on the focus early in the disease, focus silencing fails to control them in the chronic stage. Thus, dynamical changes specific to the epileptic condition are built up outside of the epileptic focus along with disease progression, which provides supporting evidence for network alterations in focal epilepsy.


Asunto(s)
Excitabilidad Cortical , Epilepsia del Lóbulo Temporal/fisiopatología , Animales , Epilepsia del Lóbulo Temporal/etiología , Ácido Kaínico/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL
16.
Eur Neurol ; 74(5-6): 288-95, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26656509

RESUMEN

BACKGROUND: Social cognition is widely studied in neurology. At present, such evaluations are designed for research or for specific diseases and simple general clinical tools are lacking. We propose a clinical evaluation tool for social cognition, the Geneva Social Cognition Scale (GeSoCS). METHODS: The GeSoCS is a 100-point scale composed of 6 subtests (theory of mind stories, recognition of social emotions, false beliefs, inferences, absurdity judgement and planning abilities) chosen from different validated tests of social and cognitive evaluation. Eighty-four patients with neurological disorders and 52 controls participated in the study. Evaluation duration lasted 20-60 min. RESULTS: Mean scores were 92.6 ± 4.5 for controls and 76.5 ± 15.3 for patients and differentiate patients and controls in all subtests. With a cut-off score of 84, the scale had a sensitivity of 62% and a specificity of 94%. In our stroke subgroup, right CVAs failed in cartoons, inferences, 'mind in the eyes', and in the temporal rule task while left CVAs were impaired in verbal/discourse tasks (social cognition, inferences, absurd stories, and cartoons. CONCLUSIONS: The GeSoCS is a medium duration assessment tool that appears to detect and characterize significant social impairment in neurological patients.


Asunto(s)
Daño Encefálico Crónico/diagnóstico , Daño Encefálico Crónico/psicología , Pruebas Neuropsicológicas/estadística & datos numéricos , Psicometría/estadística & datos numéricos , Ajuste Social , Conducta Social , Habilidades Sociales , Teoría de la Mente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados
17.
Front Neurol ; 5: 218, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25414692

RESUMEN

Epileptic seizures of focal origin are classically considered to arise from a focal epileptogenic zone and then spread to other brain regions. This is a key concept for semiological electro-clinical correlations, localization of relevant structural lesions, and selection of patients for epilepsy surgery. Recent development in neuro-imaging and electro-physiology and combinations, thereof, have been validated as contributory tools for focus localization. In parallel, these techniques have revealed that widespread networks of brain regions, rather than a single epileptogenic region, are implicated in focal epileptic activity. Sophisticated multimodal imaging and analysis strategies of brain connectivity patterns have been developed to characterize the spatio-temporal relationships within these networks by combining the strength of both techniques to optimize spatial and temporal resolution with whole-brain coverage and directional connectivity. In this paper, we review the potential clinical contribution of these functional mapping techniques as well as invasive electrophysiology in human beings and animal models for characterizing network connectivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...