Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(4): e11210, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38571805

RESUMEN

Clarifying changes in the microbial community in deadwood at different stages of decomposition is crucial for comprehending the role of deadwood in the biogeochemical processes and the sustainability of forest development. However, there have been no reports on the dynamics of microbial community during the decomposition of Pinus massoniana. We used the "space-for-time" substitution to analyze the characteristics of microbial community changes and the key influencing factors in the P. massoniana deadwood during different decomposition stages by 16S and ITS rRNA gene sequencing. The results suggest that the microbial community structure of the early decomposition (decay class I) was significantly different from the other decay classes, while the diversity and richness of the microbial community were the highest in the late decomposition (decay class V). The Linear Discriminant Analysis Effect Size analysis revealed that most bacterial and fungal taxa were significantly enriched in decay classes I and V deadwood. During the initial stages of decomposition, the relative abundance of the bacterial functional group responsible for carbohydrate metabolism was greater than the later stages. As decomposition progressed, the relative abundance of saprophytic fungi gradually decreased, and there was a shift in the comparative abundance of mixed saprophytic-symbiotic fungi from low to high before eventually decreasing. Total organic carbon, total nitrogen, carbon-to-nitrogen ratio, total potassium, total phenol, condensed tannin, lignin, and cellulose were significantly correlated with microbial community structure, with the carbon-to-nitrogen ratio having the greatest effect. Our results indicate that the physicochemical properties of deadwood, microbial community structural composition and functional group changes were related to the decay class, among which the carbon-to-nitrogen ratio may be an important factor affecting the composition and diversity of microbial communities.

2.
Cancer Cell ; 42(3): 358-377.e8, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38215747

RESUMEN

The evolutionary trajectory of glioblastoma (GBM) is a multifaceted biological process that extends beyond genetic alterations alone. Here, we perform an integrative proteogenomic analysis of 123 longitudinal glioblastoma pairs and identify a highly proliferative cellular state at diagnosis and replacement by activation of neuronal transition and synaptogenic pathways in recurrent tumors. Proteomic and phosphoproteomic analyses reveal that the molecular transition to neuronal state at recurrence is marked by post-translational activation of the wingless-related integration site (WNT)/ planar cell polarity (PCP) signaling pathway and BRAF protein kinase. Consistently, multi-omic analysis of patient-derived xenograft (PDX) models mirror similar patterns of evolutionary trajectory. Inhibition of B-raf proto-oncogene (BRAF) kinase impairs both neuronal transition and migration capability of recurrent tumor cells, phenotypic hallmarks of post-therapy progression. Combinatorial treatment of temozolomide (TMZ) with BRAF inhibitor, vemurafenib, significantly extends the survival of PDX models. This study provides comprehensive insights into the biological mechanisms of glioblastoma evolution and treatment resistance, highlighting promising therapeutic strategies for clinical intervention.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Proteogenómica , Animales , Humanos , Glioblastoma/genética , Proteínas Proto-Oncogénicas B-raf , Proteómica , Línea Celular Tumoral , Recurrencia Local de Neoplasia , Modelos Animales de Enfermedad , Neoplasias Encefálicas/genética , Resistencia a Antineoplásicos , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Nat Commun ; 15(1): 705, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267418

RESUMEN

Toxic amyloid-beta (Aß) plaque and harmful inflammation are two leading symptoms of Alzheimer's disease (AD). However, precise AD therapy is unrealizable due to the lack of dual-targeting therapy function, poor BBB penetration, and low imaging sensitivity. Here, we design a near-infrared-II aggregation-induced emission (AIE) nanotheranostic for precise AD therapy. The anti-quenching emission at 1350 nm accurately monitors the in vivo BBB penetration and specifically binding of nanotheranostic with plaques. Triggered by reactive oxygen species (ROS), two encapsulated therapeutic-type AIE molecules are controllably released to activate a self-enhanced therapy program. One specifically inhibits the Aß fibrils formation, degrades Aß fibrils, and prevents the reaggregation via multi-competitive interactions that are verified by computational analysis, which further alleviates the inflammation. Another effectively scavenges ROS and inflammation to remodel the cerebral redox balance and enhances the therapy effect, together reversing the neurotoxicity and achieving effective behavioral and cognitive improvements in the female AD mice model.


Asunto(s)
Enfermedad de Alzheimer , Femenino , Animales , Ratones , Enfermedad de Alzheimer/terapia , Especies Reactivas de Oxígeno , Péptidos beta-Amiloides , Citoesqueleto , Inflamación , Placa Amiloide
4.
Angew Chem Int Ed Engl ; 63(10): e202319700, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38197646

RESUMEN

Giant heterometallic polyoxometalate (POM) clusters with precise atom structures, flexibly adjustable and abundant active sites are promising for constructing functional nanodrugs. However, current POM drugs are almost vacant in orthotopic brain tumor therapy due to the inability to effectively penetrate the blood-brain barrier (BBB) and low drug activity. Here, we designed the largest (3.0 nm × 6.0 nm) transition-metal-lanthanide co-encapsulated POM cluster {[Ce10 Ag6 (DMEA)(H2 O)27 W22 O70 ][B-α-TeW9 O33 ]9 }2 88- featuring 238 metal centers via synergistic coordination between two geometry-unrestricted Ce3+ and Ag+ linkers with tungsten-oxo cluster fragments. This POM was combined with brain-targeted peptide to prepare a brain-targeted nanodrug that could efficiently traverse BBB and target glioma cells. The Ag+ active centers in the nanodrug specifically activate reactive oxygen species to regulate the apoptosis pathway of glioma cells with a low half-maximal inhibitory concentration (5.66 µM). As the first brain-targeted POM drug, it efficiently prolongs the survival of orthotopic glioma-bearing mice.


Asunto(s)
Aniones , Neoplasias Encefálicas , Glioma , Polielectrolitos , Ratones , Animales , Glioma/tratamiento farmacológico , Glioma/patología , Neoplasias Encefálicas/patología , Sistemas de Liberación de Medicamentos , Barrera Hematoencefálica/metabolismo
7.
ACS Nano ; 17(17): 16840-16853, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37605553

RESUMEN

Glioblastoma multiforme (GBM) is the most common malignant brain tumor with low survival, primarily due to the blood-brain barrier (BBB) and high infiltration. Upconversion nanoparticles (UCNPs)-based near-infrared (NIR) phototherapy with deep penetration is a promising therapy method against glioma but faces low photoenergy utilization that is induced by spectral mismatch and single-site Förster resonance energy transfer (FRET). Herein, we designed a brain-targeting NIR theranostic system with a dual-site FRET route and superior spectral matching to maximize energy utilization for synergistic photodynamic and photothermal therapy of glioma. The system was fabricated by Tm-doped UCNPs, zinc tetraphenylporphyrin (ZnTPP), and copper sulfide (CuS) nanoparticles under multioptimized modulation. First, the Tm-doping ratio was precisely adjusted to improve the relative emission intensity at 475 nm of UCNPs (11.5-fold). Moreover, the J-aggregate of ZnTPP increased the absorption at 475 nm (163.5-fold) of monomer; both together optimize the FRET matching between UCNPs and porphyrin for effective NIR photodynamic therapy. Simultaneously, the emission at 800 nm was utilized to magnify the photothermal effect of CuS nanoparticles for photothermal therapy via the second FRET route. After being modified by a brain-targeted peptide, the system efficiently triggers the synergistic phototherapy ablation of glioma cells and significantly prolongs the survival of orthotopic glioma-bearing mice after traversing the BBB and targeting glioma. This success of advanced spectral modulation and dual-site FRET strategy may inspire more strategies to maximize the photoenergy utilization of UCNPs for brain diseases.


Asunto(s)
Neoplasias Encefálicas , Glioma , Nanopartículas , Animales , Ratones , Transferencia Resonante de Energía de Fluorescencia , Nanomedicina Teranóstica , Encéfalo , Fototerapia , Glioma/terapia , Neoplasias Encefálicas/terapia
8.
Nat Commun ; 14(1): 4557, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507371

RESUMEN

Glioblastoma (GBM) remains the most lethal malignant tumours. Gboxin, an oxidative phosphorylation inhibitor, specifically restrains GBM growth by inhibiting the activity of F0F1 ATPase complex V. However, its anti-GBM effect is seriously limited by poor blood circulation, the blood brain barrier (BBB) and non-specific GBM tissue/cell uptake, leading to insufficient Gboxin accumulation at GBM sites, which limits its further clinical application. Here we present a biomimetic nanomedicine (HM-NPs@G) by coating cancer cell-mitochondria hybrid membrane (HM) on the surface of Gboxin-loaded nanoparticles. An additional design element uses a reactive oxygen species responsive polymer to facilitate at-site Gboxin release. The HM camouflaging endows HM-NPs@G with unique features including good biocompatibility, improved pharmacokinetic profile, efficient BBB permeability and homotypic dual tumour cell and mitochondria targeting. The results suggest that HM-NPs@G achieve improved blood circulation (4.90 h versus 0.47 h of free Gboxin) and tumour accumulation (7.73% ID/g versus 1.06% ID/g shown by free Gboxin). Effective tumour inhibition in orthotopic U87MG GBM and patient derived X01 GBM stem cell xenografts in female mice with extended survival time and negligible side effects are also noted. We believe that the biomimetic Gboxin nanomedicine represents a promising treatment for brain tumours with clinical potential.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Humanos , Femenino , Animales , Ratones , Glioblastoma/patología , Nanomedicina , Línea Celular Tumoral , Membranas Mitocondriales/patología , Barrera Hematoencefálica/metabolismo , Mitocondrias , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo
11.
Adv Sci (Weinh) ; 10(13): e2206333, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36869410

RESUMEN

Near-infrared-II (NIR-II) ferroptosis activators offer promising potentials in in vivo theranostics of deep tumors, such as glioma. However, most cases are nonvisual iron-based systems that are blind for in vivo precise theranostic study. Additionally, the iron species and their associated nonspecific activations might trigger undesired detrimental effects on normal cells. Considering gold (Au) is an essential cofactor for life and it can specifically bind to tumor cells, Au(I)-based NIR-II ferroptosis nanoparticles (TBTP-Au NPs) for brain-targeted orthotopic glioblastoma theranostics are innovatively constructed. It achieves the real-time visual monitoring of both the BBB penetration and the glioblastoma targeting processes. Moreover, it is first validated that the released TBTP-Au specifically activates the effective heme oxygenase-1-regulated ferroptosis of glioma cells to greatly extend the survival time of glioma-bearing mice. This new ferroptosis mechanism based on Au(I) may open a new way for the fabrication of advanced and high-specificity visual anticancer drugs for clinical trials.


Asunto(s)
Neoplasias Encefálicas , Ferroptosis , Glioblastoma , Glioma , Animales , Ratones , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Línea Celular Tumoral , Encéfalo/patología , Neoplasias Encefálicas/tratamiento farmacológico , Hierro
12.
Nat Commun ; 14(1): 1578, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949068

RESUMEN

Diffuse infiltration is the main reason for therapeutic resistance and recurrence in glioblastoma (GBM). However, potential targeted therapies for GBM stem-like cell (GSC) which is responsible for GBM invasion are limited. Herein, we report Insulin-like Growth Factor-Binding Protein 5 (IGFBP5) is a ligand for Receptor tyrosine kinase like Orphan Receptor 1 (ROR1), as a promising target for GSC invasion. Using a GSC-derived brain tumor model, GSCs were characterized into invasive or non-invasive subtypes, and RNA sequencing analysis revealed that IGFBP5 was differentially expressed between these two subtypes. GSC invasion capacity was inhibited by IGFBP5 knockdown and enhanced by IGFBP5 overexpression both in vitro and in vivo, particularly in a patient-derived xenograft model. IGFBP5 binds to ROR1 and facilitates ROR1/HER2 heterodimer formation, followed by inducing CREB-mediated ETV5 and FBXW9 expression, thereby promoting GSC invasion and tumorigenesis. Importantly, using a tumor-specific targeting and penetrating nanocapsule-mediated delivery of CRISPR/Cas9-based IGFBP5 gene editing significantly suppressed GSC invasion and downstream gene expression, and prolonged the survival of orthotopic tumor-bearing mice. Collectively, our data reveal that IGFBP5-ROR1/HER2-CREB signaling axis as a potential GBM therapeutic target.


Asunto(s)
Glioblastoma , Humanos , Células HEK293 , Ligandos , Glioblastoma/metabolismo , Transducción de Señal , Animales , Ratones , Invasividad Neoplásica , Ensayos Antitumor por Modelo de Xenoinjerto
13.
J Biol Chem ; 299(3): 102926, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36682493

RESUMEN

Soluble amyloid-ß oligomers (AßOs) are proposed to instigate and mediate the pathology of Alzheimer's disease, but the mechanisms involved are not clear. In this study, we reported that AßOs can undergo liquid-liquid phase separation (LLPS) to form liquid-like droplets in vitro. We determined that AßOs exhibited an α-helix conformation in a membrane-mimicking environment of SDS. Importantly, SDS is capable of reconfiguring the assembly of different AßOs to induce their LLPS. Moreover, we found that the droplet formation of AßOs was promoted by strong hydrated anions and weak hydrated cations, suggesting that hydrophobic interactions play a key role in mediating phase separation of AßOs. Finally, we observed that LLPS of AßOs can further promote Aß to form amyloid fibrils, which can be modulated by (-)-epigallocatechin gallate. Our study highlights amyloid oligomers as an important entity involved in protein liquid-to-solid phase transition and reveals the regulatory role of LLPS underlying amyloid protein aggregation, which may be relevant to the pathological process of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Transición de Fase , Agregación Patológica de Proteínas , Humanos , Enfermedad de Alzheimer/fisiopatología , Amiloide/química , Amiloide/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Dodecil Sulfato de Sodio/química , Agregación Patológica de Proteínas/fisiopatología
14.
Biomaterials ; 293: 121949, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36525706

RESUMEN

Exosome application has emerged as a promising nanotechnology discipline for various diseases therapeutics and diagnoses. Owing to the natural properties of efficient drug delivery, higher biocompatibility, facile traversing of physiological barriers, and subtle side effects, exosomes shorten their way to clinical translation. Exosomes are nanoscale membrane-bound vesicles primarily involved in intercellular communication and exhibit natural blood-brain barrier (BBB) traversing ability, which enables their application as drug delivery vehicles for brain diseases treatment. Herein, we highlight recent exosome-based drug delivery endeavors for neurodegenerative diseases and brain cancer therapy, summarize the obstacles and future directions in clinical translation.


Asunto(s)
Exosomas , Sistemas de Liberación de Medicamentos , Encéfalo , Nanotecnología , Barrera Hematoencefálica
15.
Angew Chem Int Ed Engl ; 62(2): e202211550, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36336656

RESUMEN

Optimized theranostic strategies for Alzheimer's disease (AD) remain almost absent from bench to clinic. Current probes and drugs attempting to prevent ß-amyloid (Aß) fibrosis encounter failures due to the blood-brain barrier (BBB) penetration challenge and blind intervention time window. Herein, we design a near-infrared (NIR) aggregation-induced emission (AIE) probe, DNTPH, via balanced hydrophobicity-hydrophilicity strategy. DNTPH binds selectively to Aß fibrils with a high signal-to-noise ratio. In vivo imaging revealed its excellent BBB permeability and long-term tracking ability with high-performance AD diagnosis. Remarkably, DNTPH exhibits a strong inhibitory effect on Aß fibrosis and promotes fibril disassembly, thereby attenuating Aß-induced neurotoxicity. DNTPH treatment significantly reduced Aß plaques and rescued learning deficits in AD mice. Thus, DNTPH serves as the first AIE in vivo theranostic agent for real-time NIR imaging of Aß plaques and AD therapy simultaneously.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Medicina de Precisión , Péptidos beta-Amiloides/metabolismo , Barrera Hematoencefálica/metabolismo , Imagen Óptica/métodos
16.
Nat Commun ; 13(1): 6835, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369424

RESUMEN

Glioblastoma multiforme (GBM) is one of the most fatal malignancies due to the existence of blood-brain barrier (BBB) and the difficulty to maintain an effective drug accumulation in deep GBM lesions. Here we present a biomimetic nanogel system that can be precisely activated by near infrared (NIR) irradiation to achieve BBB crossing and deep tumor penetration of drugs. Synthesized by crosslinking pullulan and poly(deca-4,6-diynedioic acid) (PDDA) and loaded with temozolomide and indocyanine green (ICG), the nanogels are inert to endogenous oxidative conditions but can be selectively disintegrated by ICG-generated reactive oxygen species upon NIR irradiation. Camouflaging the nanogels with apolipoprotein E peptide-decorated erythrocyte membrane further allows prolonged blood circulation and active tumor targeting. The precisely controlled NIR irradiation on tumor lesions excites ICG and deforms the cumulated nanogels to trigger burst drug release for facilitated BBB permeation and infiltration into distal tumor cells. These NIR-activatable biomimetic nanogels suppress the tumor growth in orthotopic GBM and GBM stem cells-bearing mouse models with significantly extended survival.


Asunto(s)
Glioblastoma , Ratones , Animales , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Nanogeles , Biomimética , Temozolomida , Verde de Indocianina , Línea Celular Tumoral
17.
Sci Rep ; 12(1): 17755, 2022 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-36272985

RESUMEN

Soilless culture has been widely used in horticultural plant production, but little research has been done on bryophyte. In this study, we selected a cultivation substrate mixed and proportioned with garden soil, granular soil, grass charcoal soil, general-purpose nutrient soil, and decomposed grade II, III, and IV fallen wood of Pinus massoniana as the raw materials of soilless substrate to investigate its effects on the growth and physiology of Plagiomnium acutum. The results showed that the total porosity, water-holding porosity, and water-holding capacity of the mixed substrate containing fallen wood of P. massoniana were significantly higher than those of other cultivated substrates. The average cover of the P. acutum was significantly and positively correlated with the substrate's total porosity and water-holding porosity. Chlorophyll content was highly significantly and positively correlated with the water holding capacity and total nitrogen content of the substrate. Among them, VIII decomposition grade Pinus massoniana fallen log:Vgrass charcoal soil = 1:1 (SW8) substrate had the highest overall evaluation index and the best overall growth condition of P. acutum. In summary, VIII decomposition grade Pinus massoniana fallen log:Vgrass charcoal soil = 1:1 (SW8) substrate can be the best substrate for cultivation of P. acutum. The addition of P. massoniana fallen wood to the soil substrate increased the total porosity, water-holding porosity, and water-holding capacity of the substrate, which was conducive to the growth of P. acutum and the increase of chlorophyll content.


Asunto(s)
Bryopsida , Pinus , Madera/química , Carbón Orgánico , Suelo/química , Nitrógeno/análisis , Agua , Clorofila , China
18.
J Control Release ; 351: 739-751, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36174804

RESUMEN

CRISPR/Cas9 gene-editing technology shows great potential for treating a variety of diseases, such as glioblastoma multiforme (GBM). However, CRISPR components suffer from inherent delivery challenges, such as poor in vivo stability of Cas9 protein and gRNA, low blood-brain barrier (BBB) permeability and non-specific tissue or cell targeting. These defects have limited the application of Cas9/gRNA ribonucleoprotein (RNP) complexes for GBM therapy. Here, we developed a brain-targeted CRISPR/Cas9 based nanomedicine by fabricating an angiopep-2 decorated, guanidinium and fluorine functionalized polymeric nanoparticle with loading Cas9/gRNA RNP for the treatment of GBM. The guanidinium and fluorine domains of our polymeric nanoparticles were both capable of interacting with Cas9/gRNA RNP to stabilize it in blood circulation, without impairing its activity. Moreover, by leveraging angiopep-2 peptide functionality, the RNP nanoparticles efficiently crossed the BBB and accumulated in brain tumors. In U87MG cells, we achieved approximately 32% gene knockout and 67% protein reduction in the targeted proto-oncogene polo-like kinase 1 (PLK1). This was sufficient to suppress tumor growth and significantly improved the median survival time of mice bearing orthotopic glioblastoma to 40 days, while inducing negligible side or off-target effects. These results suggest that the developed brain-targeted CRISPR/Cas9 based nanomedicine shows promise for effective human glioblastoma gene therapy.


Asunto(s)
Glioblastoma , ARN Guía de Kinetoplastida , Animales , Humanos , Ratones , Sistemas CRISPR-Cas , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/patología , Nanomedicina , Guanidina , Flúor , Edición Génica/métodos , Encéfalo/metabolismo
19.
Biomaterials ; 289: 121760, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36044788

RESUMEN

Selective targeting of elevated copper (Cu) in cancer cells by chelators to induce tumor-toxic reactive oxygen species (ROS) may be a promising approach in the treatment of glioblastoma multiforme (GBM). Previously, the Cu chelator di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) attracted much interest due to its potent anti-tumor activity mediated by the formation of a highly redox-active Cu-Dp44mT complex. However, its translational potential was limited by the development of toxicity in murine models of cancer reflecting poor selectivity. Here, we overcame the limitations of Dp44mT by incorporating it in new biomimetic nanoparticles (NPs) optimized for GBM therapy. Biomimetic design elements enhancing selectivity included angiopeptide-2 functionalized red blood cell membrane (Ang-M) camouflaging of the NPs carrier. Co-loading Dp44mT with regadenoson (Reg), that transiently opens the blood-brain-barrier (BBB), yielded biomimetic Ang-MNPs@(Dp44mT/Reg) NPs that actively targeted and traversed the BBB delivering Dp44mT specifically to GBM cells. To further improve selectivity, we innovatively pre-loaded GBM tumors with Cu. Oral dosing of U87MG-Luc tumor bearing mice with diacetyl-bis(4-methylthiosemicarbazonato)-copperII (Cu(II)-ATSM), significantly enhanced Cu-level in GBM tumor. Subsequent treatment of mice bearing Cu-enriched orthotopic U87MG-Luc GBM with Ang-MNPs@(Dp44mT/Reg) substantially prevented orthotopic GBM growth and led to maximal increases in median survival time. These results highlighted the importance of both angiopeptide-2 functionalization and tumor Cu-loading required for greater selective cytotoxicity. Targeting Ang-MNPs@(Dp44mT/Reg) NPs also down-regulated antiapoptotic Bcl-2, but up-regulated pro-apoptotic Bax and cleaved-caspase-3, demonstrating the involvement of the apoptotic pathway in GBM suppression. Notably, Ang-MNPs@(Dp44mT/Reg) showed negligible systemic drug toxicity in mice, further indicating therapeutic potential that could be adapted for other central nervous system disorders.


Asunto(s)
Antineoplásicos , Glioblastoma , Nanopartículas , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Biomimética , Caspasa 3 , Línea Celular Tumoral , Quelantes/farmacología , Cobre/metabolismo , Diacetil , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Ratones , Especies Reactivas de Oxígeno/metabolismo , Tiosemicarbazonas , Proteína X Asociada a bcl-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...