Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Med ; 22(1): 324, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113028

RESUMEN

BACKGROUND: A stent with characteristics of a hybrid design may have advantages in improving the patency of symptomatic iliofemoral vein obstruction. This study assessed the safety and effectiveness of the V-Mixtent Venous Stent in treating symptomatic iliofemoral outflow obstruction. METHODS: Eligible patients had a Clinical-Etiologic-Anatomic-Physiologic (CEAP) C classification of ≥ 3 or a Venous Clinical Severity Score (VCSS) pain score of ≥ 2. The primary safety endpoint was the rate of major adverse events within 30 days. The primary effectiveness endpoint was the 12-month primary patency rate. Secondary endpoints included changes in VCSS from baseline to 6 and 12 months, alterations in CEAP C classification, Chronic Venous Disease Quality of Life Questionnaire (CIVIQ-14) scores at 12 months, and stent durability measures. RESULTS: Between December 2020 and November 2021, 171 patients were enrolled across 15 institutions. A total of 185 endovenous stents were placed, with 91.81% of subjects receiving one stent and 8.19% receiving 2 stents. Within 30 days, only two major adverse events occurred (1.17%; 95% confidence interval [CI], 0.14-4.16%), below the literature-defined performance goal of 11% (P < .001). The 12-month primary patency rate (91.36%; 95% CI, 85.93-95.19%; P < .001) exceeded the literature-defined performance goal. VCSS changes from baseline demonstrated clinical improvement at 6 months (- 4.30 ± 3.66) and 12 months (- 4.98 ± 3.67) (P < .001). Significant reduction in symptoms, as measured by CEAP C classification and CIVIQ-14, was observed from pre-procedure to 12 months (P < .001). CONCLUSIONS: The 12-month outcomes confirm the safety and effectiveness of the V-Mixtent Venous Stent in managing symptomatic iliofemoral venous outflow obstruction, including clinical symptom improvement compared to before treatment.


Asunto(s)
Vena Femoral , Vena Ilíaca , Stents , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Vena Femoral/cirugía , Vena Ilíaca/cirugía , Resultado del Tratamiento , Adulto , Anciano , Calidad de Vida
2.
Water Res ; 259: 121851, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38851110

RESUMEN

Overuse of antibiotics has led to their existence in nitrogen-containing water. The impacts of antibiotics on bio-denitrification and the metabolic response of denitrifiers to antibiotics are unclear. We systematically analyzed the effect of ciprofloxacin (CIP) on bio-denitrification and found that 5 mg/L CIP greatly inhibited denitrification with a model denitrifier (Paracoccus denitrificans). Nitrate reduction decreased by 32.89 % and nitrous oxide emission increased by 75.53 %. The balance analysis of carbon and nitrogen metabolism during denitrification showed that CIP exposure blocked electron transfer and reduced the flow of substrate metabolism used for denitrification. Proteomics results showed that CIP exposure induced denitrifiers to use the pentose phosphate pathway more for substrate metabolism. This caused a substrate preference to generate NADPH to prevent cellular damage rather than NADH for denitrification. Notably, despite denitrifiers having antioxidant defenses, they could not completely prevent oxidative damage caused by CIP exposure. The effect of CIP exposure on denitrifiers after removal of extracellular polymeric substances (EPS) demonstrated that EPS around denitrifiers formed a barrier against CIP. Fluorescence and infrared spectroscopy revealed that the binding effect of proteins in EPS to CIP prevented damage. This study shows that denitrifiers resist antibiotic stress through different intracellular and extracellular defense strategies.


Asunto(s)
Antibacterianos , Ciprofloxacina , Desnitrificación , Ciprofloxacina/farmacología , Antibacterianos/farmacología , Paracoccus denitrificans/metabolismo
3.
Appl Radiat Isot ; 210: 111361, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38815446

RESUMEN

In the nuclear spectrum analysis processing, spectrum smoothing can remove the statistical fluctuation in the spectrum, which is beneficial for peak detection and peak area calculation. In this work, a spectrum smoothing algorithm is proposed based on digital Sallen-Key filter, which contains four parameters (m, n, k, D). The amplitude-frequency response curve of Sallen-Key filter is deduced and the filtering performance is analyzed. Meanwhile, the effects of the four parameters on the shape of the smoothed spectrum are explored: D affects the counts and peak areas of the spectrum, and the peak area can be corrected by the peak area correction function S'. The parameters of m, n and k affect the peak position after smoothing, making the peak position shift to the right, and the peak position correction function P' can be used to correct the peak position, when n¿2, the spectrum data appear negative after smoothing, when k¿2, the smoothed spectrum broadening degree is greater than 20%. Smoothness (R), noise smoothing factor (NSF), spectrum count ratio before and after smoothing (PER), and comprehensive evaluation factor (Q) are used to evaluate the smoothing effect of the algorithm. The parameters of the algorithm are optimally selected: about the gamma spectrum of 137Cs and 60Co, the optimal parameters are m=1.5 n=2 k=2 D=1, about the characteristic X-ray spectrum of Fe and quasi-geological sample (TiMnFeNiCuZn), the optimal parameters are m=1.1 n=1.1 k=1.3 D=1. Based on Sallen-Key smoothing method, Fourier transform method, Gaussian function method, wavelet transformation method, center of gravity method and least squares method, the gamma spectrum of 137Cs is smoothed and denoised in this paper. The results show that the Sallen-Key method has better spectrum denoising effect (R=0.6056) and comprehensive performance indicators (Q=0.6104), which can be further applied for the smoothing of nuclear spectrum data.

4.
Bioresour Technol ; 379: 129039, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37037332

RESUMEN

A highly efficient aerobic denitrifying microbe was isolated from sewage sludge by using a denitrifier enrichment strategy based on decreasing carbon content. The microbe was identified as Pseudomonas mendocina HITSZ-D1 (hereafter, D1). Investigation of the conditions under which D1 grew and denitrified revealed that it performed good growth and nitrate removal performance under a wide range of conditions. In particular, D1 rapidly removed all types of inorganic nitrogen without accumulation of the intermediate products nitrite and nitrous oxide. Overall, D1 showed a total nitrogen removal efficiency >96% at a C/N ratio of 8. The biotransformation modes and fates of three typical types of inorganic nitrogen were also assessed. Moreover, D1 had significantly higher denitrification efficiency and enzyme activities than other aerobic denitrifying microbes (Paracoccus denitrificans, Pseudomonas aeruginosa, and Pseudomonas putida). These results suggest that D1 has great potential for treating wastewater containing high concentrations of nitrogen.


Asunto(s)
Nitritos , Pseudomonas mendocina , Nitritos/metabolismo , Pseudomonas mendocina/metabolismo , Aguas del Alcantarillado , Desnitrificación , Nitratos/metabolismo , Nitrógeno/metabolismo , Nitrificación , Aerobiosis
5.
Environ Res ; 221: 115218, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36608761

RESUMEN

The regulation of bacterial quorum sensing (QS) has been used to inhibit biofouling in wastewater treatment plants and the formation of biofilms. In contrast to traditional QS regulation strategies, this study aimed to obstruct the transmembrane transport process of QS signals to decrease their extracellular accumulation. Three phytochemicals, astragaloside IV, eugenol, and baicalin were selected, their effects on biofilm formation by Pseudomonas aeruginosa PA14 were studied, and the mechanisms determined. The inhibition efficiency of biofilm formation by 50 mg/L astragaloside IV, 1 mg/L eugenol, and 1 mg/L baicalin were 37%, 26%, and 26%, respectively. Confocal laser scanning microscopy and analysis of extracellular polymeric substances indicated that the three inhibitors affected the structure and composition of the biofilms. Furthermore, bacterial motility and a variety of QS-related virulence factors were suppressed by the inhibitor treatment due to changes in bacterial QS. Notably, the three inhibitors all decreased the extracellular concentration of the QS signaling molecule 3-oxo-C12-homoseine lactone by affecting the function of efflux pump MexAB-OprM. This indirectly interfered with the bacterial QS system and thus inhibited biofilm formation. In conclusion, this study revealed the inhibitory effects and inhibition mechanism of three phytochemicals on efflux pump and QS of P. aeruginosa and realized the inhibition on biofilm formation. We update the efflux pump inhibitor library and provide a new way for biofilm contamination control.


Asunto(s)
Percepción de Quorum , Saponinas , Eugenol/farmacología , Biopelículas , Saponinas/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas
6.
Environ Sci Technol ; 56(19): 14048-14058, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36074547

RESUMEN

Current research has widely applied heteroatom doping for the promotion of catalyst activity in peroxymonosulfate (PMS) systems; however, the relationship between heteroatom doping and stimulated activation mechanism transformation is not fully understood. Herein, we introduce nitrogen and sulfur doping into a Co@rGO material for PMS activation to degrade tetracycline (TC) and systematically investigate how heteroatom doping transformed the activation mechanism of the original Co@rGO/PMS system. N was homogeneously inserted into the reduced graphene oxide (rGO) matrix of Co@rGO, inducing a significant increase in the degradation efficiency without affecting the activation mechanism transformation. Additionally, S doping converted Co3O4 to Co4S3 in Co@rGO and transformed the cooperative oxidation pathway into a single non-radical pathway with stronger intensity, which led to a higher stability against environmental interferences. Notably, based on density functional theory (DFT) calculations, we demonstrated that Co4S3 had a higher energy barrier for PMS adsorption and cleavage than Co3O4, and therefore, the radical pathway was not easily stimulated by Co4S3. Overall, this study not only illustrated the improvement due to the heteroatom doping of Co@rGO for TC degradation in a PMS system but also bridged the knowledge gap between the catalyst structure and degradation performance through activation mechanism transformation drawn from theoretical and experimental analyses.


Asunto(s)
Nitrógeno , Peróxidos , Antibacterianos , Cobalto , Grafito , Nitrógeno/química , Óxidos , Peróxidos/química , Azufre , Tetraciclina
7.
Appl Radiat Isot ; 186: 110277, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35609402

RESUMEN

The Gaussian filter shaping circuit is widely used in the nuclear pulse signal processing due to its good performance in amplitude extraction and pulse counting. A third-order Sallen-Key (3rd S-K) filter shaping circuit is designed based on a RC integrator and a second-order Sallen-Key (2nd S-K) circuit. According to the digital 3rd S-K, the transfer functions is derived in the Laplacian domain, and the numerical recurrence model is analyzed and researched, the purpose is to obtain its transfer function and amplitude-frequency response curve in the z-domain. For the simulation and actual sampling of the nuclear signal, digital shaping processing is performed at different parameters, three parameters (d, SNR, δ) are defined to compare and analyze the amplitude extraction, noise suppression and symmetry of the digital shaping method, which shows that as the shaping parameters increases, the digital shaping output noise suppression performance is better, the SNR increased from 49.25 to 64.21, the waveform is more symmetrical, the δ reduced from 34.05 to 0.22. At the same parameters, it is compared and analyzed with CR-RC3 and 2nd S-K shaping methods, according to the digital Gaussian shaping results, the 3rd S-K digital shaping method has better pulse amplitude extraction(d = 36.06%), noise suppression performance (SNR = 64.21) and waveform symmetry (δ = 0.22). Under different shaping methods, the energy resolution and pulse counting rate of the Fe characteristic X-ray energy spectrum are compared based on a Si-PIN detector. The results show that the 3rd S-K digital shaping method has better energy resolution performance and comprehensive performance indicators, which can be further applied for digital shaping of nuclear pulse signals.

8.
EBioMedicine ; 78: 103968, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35367772

RESUMEN

Myocardial infarction is lethal to patients because of insufficient blood perfusion to vital organs. Several attempts have been made to improve its prognosis, among which nanomaterial research offers an opportunity to address this problem at the molecular level and has the potential to improve disease prevention, diagnosis, and treatment significantly. Up to now, nanomaterial-based technology has played a crucial role in broad novel diagnostic and therapeutic strategies for cardiac repair. This review summarizes various nanomaterial applications in myocardial infarction from multiple aspects, including high precision detection, pro-angiogenesis, regulating immune homeostasis, and miRNA and stem cell delivery vehicles. We also propose promising research hotspots that have not been reported much yet, such as conjugating pro-angiogenetic elements with nanoparticles to construct drug carriers, developing nanodrugs targeting other immune cells except for macrophages in the infarcted myocardium or the remote region. Though most of those strategies are preclinical and lack clinical trials, there is tremendous potential for their further applications in the future.


Asunto(s)
Infarto del Miocardio , Nanopartículas , Portadores de Fármacos , Humanos , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/etiología , Infarto del Miocardio/terapia , Miocardio , Células Madre/fisiología
9.
J Hazard Mater ; 424(Pt A): 127247, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34879542

RESUMEN

Current research focused on developing multiple active species in peroxymonosulfate (PMS) system to degrade contaminants, but deepening concern lacks over why cooperation of those active species facilitated a faster degradation. Here, we employed Co3O4, rGO and Co3O4@rGO composite to activate PMS for tetracycline (TC) degradation, and detected crucial factors toward highest performance of Co3O4@rGO/PMS system. Batch experiments exhibited a satisfactory TC degradation efficiency under Co3O4@rGO/PMS, complete degraded 50 mg/L TC within 20 min. Analytical tests discovered that radical active species generated by Co3O4/PMS and non-radical species by rGO/PMS were successfully co-existed in Co3O4@rGO/PMS system, significantly improving the performance of TC removal. Subsequently, a combination of density functional theory (DFT) calculation and intermediates analysis revealed that, in Co3O4@rGO/PMS system, the cooperation rather than independent effect of radical and non-radical active species expanded TC degradation pathways, enhancing the degradation performance. Furthermore, decent adaptability, stability, and recyclability toward affecting factors variation of Co3O4@rGO/PMS demonstrated it as a potent and economical system to degrade TC. Overall, this study developed a novel Co3O4@rGO/PMS system with a cooperative oxidation pathway for highly efficient TC removal, and managed to clarify why this oxidation pathway achieved high efficiency through a combination of theoretical and experimental method.


Asunto(s)
Peróxidos , Tetraciclina , Cobalto , Óxidos
10.
Adv Ther ; 38(5): 2302-2314, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33740217

RESUMEN

INTRODUCTION: This study was designed to understand the baseline salt intake of adult patients with hypertension in Shanxi Province, and to analyze the correlation between urinary sodium excretion and blood pressure. METHODS: From June 2018 to December 2019, 16 hospitals with regional representativeness and experimental conditions in Shanxi Province were selected, and 643 eligible adult inpatients with primary hypertension were enrolled from these hospitals. The ages of patients ranged from 18 to 80 years. A 24-h ambulatory blood pressure monitoring was performed, and morning urine sodium concentration and 24-h urine sodium excretion were measured. The correlation between urinary sodium excretion and blood pressure in adult patients with hypertension was analyzed. RESULTS: The baseline salt intake of the adult patient participants with hypertension in Shanxi Province was 11.51 g/day. The average 24-h urinary sodium excretion of all observed subjects was 191.90 ± 98.18 mmol. The 24-h urinary sodium excretion and morning urinary sodium concentration were significantly positively correlated with systolic and diastolic blood pressure following adjustment of confounding factors, including gender, age, body weight, and smoking. CONCLUSION: The morning urine sodium concentration and 24-h urine sodium excretion were significantly positively correlated with blood pressure. High sodium excretion may be a risk factor for rhythm abnormalities in non-dipper pattern blood pressure. The control of urinary sodium concentration can thus be an important strategy for regulating abnormal blood pressure rhythm.


Asunto(s)
Hipertensión , Sodio , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Presión Sanguínea , Monitoreo Ambulatorio de la Presión Arterial , Humanos , Persona de Mediana Edad , Factores de Riesgo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA