Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 359, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698306

RESUMEN

BACKGROUND: Selenium (Se) fertilizer and arbuscular mycorrhizal fungi (AMF) are known to modulate cadmium (Cd) toxicity in plants. However, the effects of their co-application on wheat growth and soil microbial communities in Cd-contaminated soil are unclear. RESULTS: A pot experiment inoculation with two types of AMF and the application of Se fertilizer under Cd stress in wheat showed that inoculation AMF alone or combined with Se fertilizer significantly increased wheat biomass. Se and AMF alone or in combination significantly reduced available Cd concentration in wheat and soil, especially in the Se combined with Ri treatment. High throughput sequencing of soil samples indicated that Se and AMF application had stronger influence on bacterial community compared to fungal community and the bacterial network seemed to have more complex interconnections than the fungal network, and finally shaped the formation of specific microflora to affect Cd availability. CONCLUSION: These results indicate that the application of Se and AMF, particularly in combination, could successfully decrease soil Cd availability and relieve the harm of Cd in wheat by modifying rhizosphere soil microbial communities.


Asunto(s)
Biomasa , Cadmio , Fertilizantes , Micorrizas , Rizosfera , Selenio , Microbiología del Suelo , Triticum , Triticum/crecimiento & desarrollo , Triticum/microbiología , Triticum/efectos de los fármacos , Micorrizas/fisiología , Cadmio/análisis , Cadmio/toxicidad , Fertilizantes/análisis , Selenio/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Microbiota/efectos de los fármacos
2.
J Hazard Mater ; 472: 134516, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38714056

RESUMEN

There are many heavy metal stresses in agricultural biological systems, especially cadmium (Cd) stress, which prevent the full growth of plants, lead to a serious decline in crop yield, and endanger human health. Molybdenum (Mo), an essential nutrient element for plants, regulates plant growth mainly by reducing the absorption of heavy metals and protecting plants from oxidative damage. The aim of this study was to determine the protective effect of Mo (1 µM) application on wheat plants under conditions of Cd (10 µM) toxicity. The biomass, Cd and Mo contents, photosynthesis, leaf and root ultrastructure, antioxidant system, and active oxygen content of the wheat plants were determined. Mo increased the total chlorophyll content of wheat leaves by 43.02% and the net photosynthetic rate by 38.67%, and ameliorated the inhibitory effect of cadmium on photosynthesis by up-regulating photosynthesis-related genes and light-trapping genes. In addition, Mo reduced the content of superoxide anion (O2•-) by 16.55% and 31.12%, malondialdehyde (MDA) by 20.75% and 7.17%, hydrogen peroxide (H2O2) by 24.69% and 8.17%, and electrolyte leakage (EL) by 27.59% and 16.82% in wheat leaves and roots, respectively, and enhanced the antioxidant system to reduce the burst of reactive oxygen species and alleviate the damage of Cd stress on wheat. According to the above results, Mo is considered a plant essential nutrient that enhances Cd tolerance in wheat by limiting the absorption, accumulation and transport of Cd and by regulating antioxidant defence mechanisms. ENVIRONMENTAL IMPLICATION: Cadmium (Cd),is one of the most toxic heavy metals in the environment, and Cd pollution is a global environmental problem that threatens food security and human health. Molybdenum (Mo), as an essential plant nutrient, is often used to resist environmental stress. However, the mechanism of Mo treatment on wheat subjected to Cd stress has not been reported. In this study, we systematically analysed the effects of Mo on the phenotype, physiology, biochemistry, ultrastructure and Cd content of wheat subjected to Cd stress, and comprehensively analysed the transcriptomics. It not only reveals the mechanism of Mo tolerance to Cd stress in wheat, but also provides new insights into phytoremediation and plant growth in Cd-contaminated soil.


Asunto(s)
Cadmio , Molibdeno , Fotosíntesis , Hojas de la Planta , Triticum , Triticum/efectos de los fármacos , Triticum/metabolismo , Triticum/genética , Cadmio/toxicidad , Molibdeno/toxicidad , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Fotosíntesis/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Contaminantes del Suelo/toxicidad , Antioxidantes/metabolismo , Transcriptoma/efectos de los fármacos , Clorofila/metabolismo , Peróxido de Hidrógeno , Estrés Oxidativo/efectos de los fármacos , Malondialdehído/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
3.
Nat Commun ; 15(1): 4426, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789507

RESUMEN

Iron and phosphorus are essential nutrients that exist at low concentrations in surface waters and may be co-limiting resources for phytoplankton growth. Here, we show that phosphorus deficiency increases the growth of iron-limited cyanobacteria (Synechocystis sp. PCC 6803) through a PhoB-mediated regulatory network. We find that PhoB, in addition to its well-recognized role in controlling phosphate homeostasis, also regulates key metabolic processes crucial for iron-limited cyanobacteria, including ROS detoxification and iron uptake. Transcript abundances of PhoB-targeted genes are enriched in samples from phosphorus-depleted seawater, and a conserved PhoB-binding site is widely present in the promoters of the target genes, suggesting that the PhoB-mediated regulation may be highly conserved. Our findings provide molecular insights into the responses of cyanobacteria to simultaneous iron/phosphorus nutrient limitation.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Hierro , Fósforo , Synechocystis , Fósforo/metabolismo , Fósforo/deficiencia , Synechocystis/metabolismo , Synechocystis/genética , Hierro/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Regiones Promotoras Genéticas/genética , Agua de Mar/microbiología , Homeostasis , Especies Reactivas de Oxígeno/metabolismo
4.
Theor Appl Genet ; 137(1): 15, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38184817

RESUMEN

Solanum americanum serves as a promising source of resistance genes against potato late blight and is considered as a leafy vegetable for complementary food and nutrition. The limited availability of high-quality genome assemblies and gene annotations has hindered the exploration and exploitation of stress-resistance genes in S. americanum. Here, we present a chromosome-level genome assembly of a thermotolerant S. americanum ecotype and identify a crucial heat-inducible transcription factor gene, SaHSF17, essential for heat tolerance. The CRISPR/Cas9 system-mediated knockout of SaHSF17 results in remarkably reduced thermotolerance in S. americanum, exhibiting a significant suppression of multiple HSP gene expressions under heat treatment. Furthermore, our transcriptome analysis and anthocyanin component investigation of fruits indicated that delphinidins are the major anthocyanins accumulated in the mature dark-purple fruits. The accumulation of delphinidins and other pigment components during fruit ripening in S. americanum coincides with the transcriptional regulation of key genes, particularly the F3'5'H and F3'H genes, in the anthocyanin biosynthesis pathway. By integrating existing knowledge, the development of this high-quality reference genome for S. americanum will facilitate the identification and utilization of novel abiotic and biotic stress-resistance genes for improvement of Solanaceae and other crops.


Asunto(s)
Solanum , Termotolerancia , Antocianinas , Frutas/genética , Termotolerancia/genética , Solanum/genética , Edición Génica , Cromosomas
6.
BMC Plant Biol ; 23(1): 224, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37101116

RESUMEN

BACKGROUND: Selenium (Se) deficiency causes a series of health disorders in humans, and Se concentrations in the edible parts of crops can be improved by altering exogenous Se species. However, the uptake, transport, subcellular distribution and metabolism of selenite, selenate and SeMet (selenomethionine) under the influence of phosphorus (P) has not been well characterized. RESULTS: The results showed that increasing the P application rate enhanced photosynthesis and then increased the dry matter weight of shoots with selenite and SeMet treatment, and an appropriate amount of P combined with selenite treatment increased the dry matter weight of roots by enhancing root growth. With selenite treatment, increasing the P application rate significantly decreased the concentration and accumulation of Se in roots and shoots. P1 decreased the Se migration coefficient, which could be attributed to the inhibited distribution of Se in the root cell wall, but increased distribution of Se in the root soluble fraction, as well as the promoted proportion of SeMet and MeSeCys (Se-methyl-selenocysteine) in roots. With selenate treatment, P0.1 and P1 significantly increased the Se concentration and distribution in shoots and the Se migration coefficient, which could be attributed to the enhanced proportion of Se (IV) in roots but decreased proportion of SeMet in roots. With SeMet treatment, increasing the P application rate significantly decreased the Se concentration in shoots and roots but increased the proportion of SeCys2 (selenocystine) in roots. CONCLUSION: Compared with selenate or SeMet treatment, treatment with an appropriate amount of P combined with selenite could promote plant growth, reduce Se uptake, alter Se subcellular distribution and speciation, and affect Se bioavailability in wheat.


Asunto(s)
Selenio , Humanos , Selenio/metabolismo , Ácido Selénico , Triticum/metabolismo , Fertilizantes , Fósforo/metabolismo , Ácido Selenioso/metabolismo
7.
Plant Mol Biol ; 112(1-2): 99-103, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37076747

RESUMEN

APETALA2 (AP2) is well known for regulating the development of floral organs, ovules, seed coats, and the mass of seeds, but the role of AP2 in seed germination remains unclear. Here, we report that AP2 interacts with ABI5 in nuclear speckles and functions in controlling seed germination. Genetic study showed that the abi5 mutation could restore the ABA-sensitive phenotype of ap2 mutants, supporting that AP2 antagonizes ABI5 in ABA signaling and ABA-mediated inhibition of seed germination. In addition, we observed the interactions of AP2 with SnRK2.2, SnRK2.3, and SnRK2.6 in nuclear speckles, suggesting that AP2 plays a multifaceted role in the ABA signaling pathway. Our findings revealed that the interactions of AP2 with SnRK2s and ABI5 are critical for ABA signaling in control of seed germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Germinación , Ácido Abscísico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Semillas/metabolismo , Transducción de Señal , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética
8.
J Integr Plant Biol ; 65(6): 1383-1393, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36661041

RESUMEN

Salt stress adversely impacts crop production. Several spliceosome components have been implicated in regulating salt stress responses in plants, however, the underlying molecular basis is still unclear. Here we report that the spliceosomal core protein SmEb is essential to salt tolerance in Arabidopsis. Transcriptome analysis showed that SmEb modulates alternative splicing of hundreds of pre-mRNAs in plant response to salt stress. Further study revealed that SmEb is crucial in maintaining proper ratio of two RCD1 splicing variants (RCD1.1/RCD1.2) important for salt stress response. In addition, RCD1.1 but not RCD1.2 is able to interact with the stress regulators and attenuates salt-sensitivity by decreasing salt-induced cell death in smeb-1 mutant. Together, our findings uncovered the essential role of SmEb in the regulation of alternative pre-mRNA splicing in salt stress response.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Empalme Alternativo/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Tolerancia a la Sal/genética , Estrés Fisiológico/genética
9.
Proc Natl Acad Sci U S A ; 119(42): e2211244119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215485

RESUMEN

Desert-inhabiting cyanobacteria can tolerate extreme desiccation and quickly revive after rehydration. The regulatory mechanisms that enable their vegetative cells to resurrect upon rehydration are poorly understood. In this study, we identified a single gene family of high light-inducible proteins (Hlips) with dramatic expansion in the Nostoc flagelliforme genome and found an intriguingly special convergence formed through four tandem gene duplication. The emerged four independent hlip genes form a gene cluster (hlips-cluster) and respond to dehydration positively. The gene mutants in N. flagelliforme were successfully generated by using gene-editing technology. Phenotypic analysis showed that the desiccation tolerance of hlips-cluster-deleted mutant decreased significantly due to impaired photosystem II repair, whereas heterologous expression of hlips-cluster from N. flagelliforme enhanced desiccation tolerance in Nostoc sp. PCC 7120. Furthermore, a transcription factor Hrf1 (hlips-cluster repressor factor 1) was identified and shown to coordinately regulate the expression of hlips-cluster and desiccation-induced psbAs. Hrf1 acts as a negative regulator for the adaptation of N. flagelliforme to the harsh desert environment. Phylogenetic analysis revealed that most species in the Nostoc genus possess both tandemly repeated Hlips and Hrf1. Our results suggest convergent evolution of desiccation tolerance through the coevolution of tandem Hlips duplication and Hrf1 in subaerial Nostoc species, providing insights into the mechanism of desiccation tolerance in photosynthetic organisms.


Asunto(s)
Nostoc , Complejo de Proteína del Fotosistema II , Desecación , Nostoc/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Filogenia , Factores de Transcripción/metabolismo
10.
Stress Biol ; 2(1): 1, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-37676343

RESUMEN

Lysine-ε-acetylation (Kac) is a post-translational modification (PTM) that is critical for metabolic regulation and cell signaling in mammals. However, its prevalence and importance in plants remain to be determined. Employing high-resolution tandem mass spectrometry, we analyzed protein lysine acetylation in five representative Arabidopsis organs with 2 ~ 3 biological replicates per organ. A total of 2887 Kac proteins and 5929 Kac sites were identified. This comprehensive catalog allows us to analyze proteome-wide features of lysine acetylation. We found that Kac proteins tend to be more uniformly expressed in different organs, and the acetylation status exhibits little correlation with the gene expression level, indicating that acetylation is unlikely caused by stochastic processes. Kac preferentially targets evolutionarily conserved proteins and lysine residues, but only a small percentage of Kac proteins are orthologous between rat and Arabidopsis. A large portion of Kac proteins overlap with proteins modified by other PTMs including ubiquitination, SUMOylation and phosphorylation. Although acetylation, ubiquitination and SUMOylation all modify lysine residues, our analyses show that they rarely target the same sites. In addition, we found that "reader" proteins for acetylation and phosphorylation, i.e., bromodomain-containing proteins and GRF (General Regulatory Factor)/14-3-3 proteins, are intensively modified by the two PTMs, suggesting that they are main crosstalk nodes between acetylation and phosphorylation signaling. Analyses of GRF6/14-3-3λ reveal that the Kac level of GRF6 is decreased under alkaline stress, suggesting that acetylation represses plant alkaline response. Indeed, K56ac of GRF6 inhibits its binding to and subsequent activation of the plasma membrane H+-ATPase AHA2, leading to hypersensitivity to alkaline stress. These results provide valuable resources for protein acetylation studies in plants and reveal that protein acetylation suppresses phosphorylation output by acetylating GRF/14-3-3 proteins.

11.
Stress Biol ; 2(1): 9, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-37676515

RESUMEN

Arsenic is a metalloid toxic to plants, animals and human beings. Small ubiquitin-like modifier (SUMO) conjugation is involved in many biological processes in plants. However, the role of SUMOylation in regulating plant arsenic response is still unclear. In this study, we found that dysfunction of SUMO E3 ligase SIZ1 improves arsenite resistance in Arabidopsis. Overexpression of the dominant-negative SUMO E2 variant resembled the arsenite-resistant phenotype of siz1 mutant, indicating that SUMOylation plays a negative role in plant arsenite detoxification. The siz1 mutant accumulated more glutathione (GSH) than the wild type under arsenite stress, and the arsenite-resistant phenotype of siz1 was depressed by inhibiting GSH biosynthesis. The transcript levels of the genes in the GSH biosynthetic pathway were increased in the siz1 mutant comparing with the wild type in response to arsenite treatment. Taken together, our findings revealed a novel function of SIZ1 in modulating plant arsenite response through regulating the GSH-dependent detoxification.

12.
Front Plant Sci ; 13: 1082511, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36704159

RESUMEN

As a common adverse environmental factor, heat stress (HS) not only drastically changes the plant transcriptome at the transcription level but also increases alternative splicing (AS), especially intron retention (IR) events. However, the exact mechanisms are not yet well understood. Here, we reported that NTC-related protein 1 (NTR1), which acts as an accessory component for spliceosome disassembly, is necessary for this process. The mutants of NTR1, both the T-DNA insertion and the point mutation identified through ethyl methanesulfonate (EMS) mutagenesis screening, are vulnerable to HS, indicating that NTR1 is essential for plant HS tolerance. At the molecular level, genes of response to heat and response to temperature stimulus are highly enriched among those of heat-induced but less-expressed ntr1 mutants. Moreover, a large portion of HS response (HSR) genes such as heat shock transcription factors (HSFs) and heat shock proteins (HSPs) are less induced by heat treatment, and more AS events, especially IR events, were found in heat-treated ntr1 mutants. Furthermore, HS suppressed the expression of NTR1 and NTR1-associated complex components. Thus, it is very likely that upon HS, the plant reduces the expression of the NTR1-associated complex to fulfill the fast demands for transcription of HSR genes such as HSFs and HSPs, which in turn results in the accumulation of improperly spliced especially IR products and eventually causes harm to plants.

13.
Planta ; 254(5): 98, 2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34657208

RESUMEN

MAIN CONCLUSION: Mota Maradi is a sorghum line that exhibits holistic salinity tolerance mechanisms, making it a viable potential donor in breeding efforts for improved sorghum lines. High soil salinity is one of the global challenges for crop growth and productivity. Understanding the salinity tolerance mechanisms in crops is necessary for genetic breeding of salinity-tolerant crops. In this study, physiological and molecular mechanisms in sorghum were identified through a comparative analysis between a Nigerien salinity-tolerant sorghum landrace, Mota Maradi, and the reference sorghum line, BTx623. Significant differences on physiological performances were observed, particularly on growth and biomass gain, photosynthetic rate, and the accumulation of Na+, K+, proline, and sucrose. Transcriptome profiling of the leaves, leaf sheaths, stems, and roots revealed contrasting differentially expressed genes (DEGs) in Mota Maradi and BTx623 which supports the physiological observations from both lines. Among the DEGs, ion transporters such as HKT, NHX, AKT, HAK5, and KUP3 were likely responsible for the differences in Na+ and K+ accumulation. Meanwhile, DEGs involved in photosynthesis, cellular growth, signaling, and ROS scavenging were also identified between these two genotypes. Functional and pathway analysis of the DEGs has revealed that these processes work in concert and are crucial in elevated salinity tolerance in Mota Maradi. Our findings indicate how different complex processes work synergistically for salinity stress tolerance in sorghum. This study also highlights the unique adaptation of landraces toward their respective ecosystems, and their strong potential as genetic resources for future plant breeding endeavors.


Asunto(s)
Tolerancia a la Sal , Sorghum , Ecosistema , Perfilación de la Expresión Génica , Fitomejoramiento , Salinidad , Tolerancia a la Sal/genética , Sorghum/genética , Estrés Fisiológico , Transcriptoma
14.
Plant Physiol ; 187(4): 2592-2607, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34618093

RESUMEN

Salicylic acid (SA) plays an important role for plant immunity, especially resistance against biotrophic pathogens. SA quickly accumulates after pathogen attack to activate downstream immunity events and is normally associated with a tradeoff in plant growth. Therefore, the SA level in plants has to be strictly controlled when pathogens are absent, but how this occurs is not well understood. Previously we found that in Arabidopsis (Arabidopsis thaliana), HISTONE DEACETYLASE 6 (HDA6), a negative regulator of gene expression, plays an essential role in plant immunity since its mutation allele shining 5 (shi5) exhibits autoimmune phenotypes. Here we report that this role is mainly through suppression of SA biosynthesis: first, the autoimmune phenotypes and higher resistance to Pst DC3000 of shi5 mutants depended on SA; second, SA significantly accumulated in shi5 mutants; third, HDA6 repressed SA biosynthesis by directly controlling the expression of CALMODULIN BINDING PROTEIN 60g (CBP60g) and SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1). HDA6 bound to the chromatin of CBP60g and SARD1 promoter regions, and histone H3 acetylation was highly enriched within these regions. Furthermore, the transcriptome of shi5 mutants mimicked that of plants treated with exogenous SA or attacked by pathogens. All these data suggest that HDA6 is vital for plants in finely controlling the SA level to regulate plant immunity.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Histona Desacetilasas/genética , Inmunidad de la Planta/genética , Ácido Salicílico/metabolismo , Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Histona Desacetilasas/metabolismo
15.
Nat Commun ; 12(1): 2456, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33911084

RESUMEN

The phytohormone abscisic acid (ABA) is crucial for plant responses to environmental challenges. The SNF1-regulated protein kinase 2s (SnRK2s) are key components in ABA-receptor coupled core signaling, and are rapidly phosphorylated and activated by ABA. Recent studies have suggested that Raf-like protein kinases (RAFs) participate in ABA-triggered SnRK2 activation. In vitro kinase assays also suggest the existence of autophosphorylation of SnRK2s. Thus, how SnRK2 kinases are quickly activated during ABA signaling still needs to be clarified. Here, we show that both B2 and B3 RAFs directly phosphorylate SnRK2.6 in the kinase activation loop. This transphosphorylation by RAFs is essential for SnRK2 activation. The activated SnRK2s then intermolecularly trans-phosphorylate other SnRK2s that are not yet activated to amplify the response. High-order Arabidopsis mutants lacking multiple B2 and B3 RAFs show ABA hyposensitivity. Our findings reveal a unique initiation and amplification mechanism of SnRK2 activation in ABA signaling in higher plants.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Fosforilación , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética
16.
Stress Biol ; 1(1): 4, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37676319

RESUMEN

Abscisic acid (ABA) signaling is critical for seed germination and abiotic stress responses in terrestrial plants. Pre-mRNA splicing is known to regulate ABA signaling. However, the involvement of canonical spliceosomal components in regulating ABA signaling is poorly understood. Here, we show that the spliceosome component Sm core protein SmEb plays an important role in ABA signaling. SmEb expression is up-regulated by ABA treatment, and analysis of Arabidopsis smeb mutant plants suggest that SmEb modulates the alternative splicing of the ABA signaling component HAB1 by enhancing the HAB1.1 splicing variant while repressing HAB1.2. Overexpression of HAB1.1 but not HAB1.2 rescues the ABA-hypersensitive phenotype of smeb mutants. Mutations in the transcription factor ABI3, 4, or 5 also reduce the ABA hypersensitivity of smeb mutants during seed germination. Our results show that the spliceosomal component SmEb plays an important role in ABA regulation of seed germination and early seedling development.

17.
Stress Biol ; 1(1): 14, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37676545

RESUMEN

Soil salinity severely hampers agricultural productivity. Under salt stress, excess Na+ accumulation causes cellular damage and plant growth retardation, and membrane Na+ transporters play central roles in Na+ uptake and exclusion to mitigate these adverse effects. In this study, we performed sos1 suppressor mutant (named sup) screening to uncover potential genetic interactors of SOS1 and additional salt tolerance mechanisms. Map-based cloning and sequencing identified a group of mutants harboring dominant gain-of-function mutations in the vacuolar Na+/H+ antiporter gene AtNHX1. The gain-of-function variants of AtNHX1 showed enhanced transporter activities in yeast cells and increased salt tolerance in Arabidopsis wild type plants. Ion content measurements indicated that at the cellular level, these gain-of-function mutations resulted in increased cellular Na+ accumulation likely due to enhanced vacuolar Na+ sequestration. However, the gain-of-function suppressor mutants showed reduced shoot Na+ but increased root Na+ accumulation under salt stress, indicating a role of AtNHX1 in limiting Na+ translocation from root to shoot. We also identified another group of sos1 suppressors with loss-of-function mutations in the Na+ transporter gene AtHKT1. Loss-of-function mutations in AtHKT1 and gain-of-function mutations in AtNHX1 additively suppressed sos1 salt sensitivity, which indicates that the three transporters, SOS1, AtNHX1 and AtHKT1 function independently but coordinately in controlling Na+ homeostasis and salt tolerance in Arabidopsis. Our findings provide valuable information about the target amino acids in NHX1 for gene editing to improve salt tolerance in crops.

18.
Stress Biol ; 1(1): 9, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37676567

RESUMEN

Maintenance of cell wall integrity is of great importance not only for plant growth and development, but also for the adaptation of plants to adverse environments. However, how the cell wall integrity is modulated under salt stress is still poorly understood. Here, we report that a nuclear-localized Agenet domain-containing protein SWO1 (SWOLLEN 1) is required for the maintenance of cell wall integrity in Arabidopsis under salt stress. Mutation in SWO1 gene results in swollen root tips, disordered root cell morphology, and root elongation inhibition under salt stress. The swo1 mutant accumulates less cellulose and pectin but more lignin under high salinity. RNA-seq and ChIP-seq assays reveal that SWO1 binds to the promoter of several cell wall-related genes and regulates their expression under saline conditions. Further study indicates that SWO1 interacts with importin ɑ IMPA1 and IMPA2, which are required for the import of nuclear-localized proteins. The impa1 impa2 double mutant also exhibits root growth inhibition under salt stress and mutations of these two genes aggravate the salt-hypersensitive phenotype of the swo1 mutant. Taken together, our data suggest that SWO1 functions together with importin ɑ to regulate the expression of cell wall-related genes, which enables plants to maintain cell wall integrity under high salinity.

19.
New Phytol ; 229(4): 2035-2049, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33048351

RESUMEN

Plant stomata play a crucial role in leaf function, controlling water transpiration in response to environmental stresses and modulating the gas exchange necessary for photosynthesis. The phytohormone abscisic acid (ABA) promotes stomatal closure and inhibits light-induced stomatal opening. The Arabidopsis thaliana E3 ubiquitin ligase COP1 functions in ABA-mediated stomatal closure. However, the underlying molecular mechanisms are still not fully understood. Yeast two-hybrid assays were used to identify ABA signaling components that interact with COP1, and biochemical, molecular and genetic studies were carried out to elucidate the regulatory role of COP1 in ABA signaling. The cop1 mutants are hyposensitive to ABA-triggered stomatal closure under light and dark conditions. COP1 interacts with and ubiquitinates the Arabidopsis clade A type 2C phosphatases (PP2Cs) ABI/HAB group and AHG3, thus triggering their degradation. Abscisic acid enhances the COP1-mediated degradation of these PP2Cs. Mutations in ABI1 and AHG3 partly rescue the cop1 stomatal phenotype and the phosphorylation level of OST1, a crucial SnRK2-type kinase in ABA signaling. Our data indicate that COP1 is part of a novel signaling pathway promoting ABA-mediated stomatal closure by regulating the stability of a subset of the Clade A PP2Cs. These findings provide novel insights into the interplay between ABA and the light signaling component in the modulation of stomatal movement.


Asunto(s)
Ácido Abscísico , Proteínas de Arabidopsis/fisiología , Fosfoproteínas Fosfatasas/fisiología , Estomas de Plantas/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Proteína Coat de Complejo I , Mutación/genética , Proteínas Quinasas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...