Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 36(20)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38335547

RESUMEN

In the search for high-temperature superconductivity in hydrides, a plethora of multi-hydrogen superconductors have been theoretically predicted, and some have been synthesized experimentally under ultrahigh pressures of several hundred GPa. However, the impracticality of these high-pressure methods has been a persistent issue. In response, we propose a new approach to achieve high-temperature superconductivity under ambient pressure by implanting hydrogen into lead to create a stable few-hydrogen binary perovskite, Pb4H. This approach diverges from the popular design methodology of multi-hydrogen covalent high critical temperature (Tc) superconductors under ultrahigh pressure. By solving the anisotropic Migdal-Eliashberg equations, we demonstrate that perovskite Pb4H presents a phonon-mediated superconductivity exceeding 46 K with inclusion of spin-orbit coupling, which is six times higher than that of bulk Pb (7.22 K) and comparable to that of MgB2, the highestTcachieved experimentally at ambient pressure under the Bardeen, Cooper, and Schrieffer framework. The highTccan be attributed to the strong electron-phonon coupling strength of 2.45, which arises from hydrogen implantation in lead that induces several high-frequency optical phonon modes with a relatively large phonon linewidth resulting from H atom vibration. The metallic-bonding in perovskite Pb4H not only improves the structural stability but also guarantees better ductility than the widely investigated multi-hydrogen, iron-based and cuprate superconductors. These results suggest that there is potential for the exploration of new high-temperature superconductors under ambient pressure and may reignite interest in their experimental synthesis in the near future.

2.
Nano Lett ; 23(17): 8126-8131, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37602837

RESUMEN

The multi-hydrogen lanthanum hydride LaH10 is well recognized as having the highest critical temperature (Tc) of 250-260 K under unrealistically ultrahigh pressures of about 170-200 GPa. Here, we propose a novel idea for designing a new ambient-pressure high-Tc superconductor by inserting a hexagonal H-monolayer into two close-packed Be monolayers to form a new and stable few-hydrogen metal-bonded layered beryllium hydride (Be4)2H nanosuperlattice, with better ductility than multi-hydrogen, cuprate, and iron-based superconductors, completely contrary to the conventional design strategy for multi-hydrogen covalent high-Tc superconductors with poor ductility at several hundred GPa. We find that (Be4)2H is a phonon-mediated Eliashberg superconductor with a large electron-phonon coupling constant of 1.41 and a high Tc of 84-72 K with Coulomb repulsion pseudopotential µ* = 0.07-0.13. Importantly, (Be4)2H is the only new high-Tc superconductor and fills the gap in the absence of ambient-pressure superconductors around the liquid-nitrogen temperature with good ductility, which is highly beneficial for practical applications.

3.
Phys Chem Chem Phys ; 25(31): 21037-21044, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37522183

RESUMEN

The discovery of superconductivity in layered MgB2 has renewed interest in the search for high-temperature conventional superconductors, leading to the synthesis of numerous hydrogen-dominated materials with high critical temperatures (Tc) under high pressures. However, achieving a high-Tc superconductor under ambient pressure remains a challenging goal. In this study, we propose a novel approach to realize a high-temperature superconductor under ambient pressure by introducing a hexagonal H monolayer into the hexagonal close-packed magnesium lattice, resulting in a new and stable few-hydrogen metal-bonded layered magnesium hydride (Mg4)2H1. This compound exhibits superior ductility compared to multi-hydrogen, cuprate, and iron-based superconductors due to its metallic bonding. Our unconventional strategy diverges from the conventional design principles used in hydrogen-dominated covalent high-temperature superconductors. Using anisotropic Migdal-Eliashberg equations, we demonstrate that the stable (Mg4)2H1 compound is a typical phonon-mediated superconductor, characterized by strong electron-phonon coupling and an excellent Tc of 37 K under ambient conditions, comparable to that of MgB2. Our findings not only present a new pathway for exploring high-temperature superconductors but also provide valuable insights for future experimental synthesis endeavors.

4.
Angew Chem Int Ed Engl ; 62(19): e202301309, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36861146

RESUMEN

A matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) assisted genome mining strategy was developed for the discovery of glycosyltransferase (GT) from the root of Platycodon grandiflorum. A di-O-glycosyltransferase PgGT1 was discovered and characterized that is capable of catalyzing platycoside E (PE) synthesis through the attachment of two ß-1,6-linked glucosyl residues sequentially to the glucosyl residue at the C3 position of platycodin D (PD). Although UDP-glucose is the preferred sugar donor for PgGT1, it could also utilize UDP-xylose and UDP-N-acetylglucosamine as weak donors. Residues S273, E274, and H350 played important roles in stabilizing the glucose donor and positioning the glucose in the optimal orientation for the glycosylation reaction. This study clarified two key steps involved in the biosynthetic pathway of PE and could greatly contribute to improving its industrial biotransformation.


Asunto(s)
Glicosiltransferasas , Platycodon , Glicosiltransferasas/metabolismo , Platycodon/química , Platycodon/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Glucosa/metabolismo , Uridina Difosfato/metabolismo
5.
Small ; 18(22): e2107161, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35527340

RESUMEN

All-inorganic lead-free Cs3 Cu2 I5  perovskite-derivant quantum dots (QDs) have attracted tremendous attention due to their nontoxicity and unique optoelectronic properties. However, the traditional hot-injection method requires high temperatures and multiple ligands to confine the growth of QDs. Herein, a strategy is reported to spontaneously synthesize ultrasmall Cs3 Cu2 I5  QDs within metal-organic-frameworks (MOFs) MOF-74 at room temperature (RT) with an average diameter of 4.33 nm. The obtained Cs3 Cu2 I5  QDs exhibit an evident deep-blue emission with Commission Internationale de L'Eclairage coordinates of (0.17, 0.07), owing to the strong quantum confinement effect. Due to the protection of MOF-74, the Cs3 Cu2 I5  QDs demonstrate superior stability, and the photoluminescence quantum yield retains 89% of the initial value after the storage of 1440 h under the environment with relative humidity exceeding 70%. Besides, triplet-triplet annihilation upconversion emission is observed within the composite of Cs3 Cu2 I5 @MOF-74, which brings out apparent temperature-dependent photoluminescence. This study reveals a facile method for fabricating ultrasmall lead-free perovskite-derivant QDs at RT without multiple ligands. Besides, the temperature-dependent photoluminescence of Cs3 Cu2 I5 @MOF-74 may open up a new way to develop the applications of temperature sensors or other related optoelectronic devices.

6.
ACS Appl Mater Interfaces ; 14(15): 17319-17329, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35385245

RESUMEN

Thanks to its ultrahigh carrier mobility (∼104-105 cm2 V-1 s-1), graphene shows tremendous application potential in nanoelectronics, but it cannot be applied in effective field-effect transistors (FETs) because of its intrinsic gapless band structure. Thus, introducing a bandgap for graphene is a prerequisite to realize an FET for logic applications. Herein, through first-principles GW calculations, we have predicted a series of novel Dion-Jacobson (DJ) phase halide perovskite semiconductors CsSb(Br1-xIx)4 (x = 0, 0.5, 1) with the quasi-linear (graphene-like) band edge dispersion; as the best one of which, CsSbBr2I2 exhibits a direct bandgap (0.52 eV) as well as a quasi-linear electronic dispersion, yielding an ultrasmall carrier effective mass (0.03 m0) and a high estimated carrier mobility (5 × 103 cm2 V-1 s-1). This gives a significant reference to the exploration of semiconductors with excellent transport properties. Moreover, our calculations also implicate that the DJ perovskites CsSb(Br1-xIx)4 (x = 0, 0.25, 0.5, 0.75, 1) show soft and anisotropic mechanical characteristics as well as excellent electronic, transport, and optical properties, which demonstrate their multifunctional application in infrared optoelectronic, high-speed electronics, and photovoltaics.

7.
Phys Chem Chem Phys ; 24(4): 2110-2117, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35019921

RESUMEN

Very recently, the septuple-atomic-layer MoSi2N4 has been successfully synthesized by a chemical vapor deposition method. However, pristine MoSi2N4 exhibits some shortcomings, including poor visible-light harvesting capability and a low separation rate of photo-excited electron-hole pairs, when it is applied in water splitting to produce hydrogen. Fortunately, we find that MoSi2N4 can be considered as a good co-catalyst to be stacked with InSe forming an efficient heterostructure photocatalyst. Here, the electronic and photocatalytic properties of the two-dimensional (2D) InSe/MoSi2N4 heterostructure have been systematically investigated by density functional theory for the first time. The results demonstrate that 2D InSe/MoSi2N4 has a type-II band alignment with a favourable direct bandgap of 1.61 eV and exhibits suitable band edge positions for overall water splitting. Particularly, 2D InSe/MoSi2N4 has high electron mobility (104 cm2 V-1 s-1) and shows a noticeable optical absorption coefficient (105 cm-1) in the visible-light region of the solar spectrum. These brilliant properties declare that 2D InSe/MoSi2N4 is a potential photocatalyst for overall water splitting.

8.
Adv Sci (Weinh) ; 9(2): e2102895, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34841731

RESUMEN

Perovskite-based optoelectronic devices have attracted considerable attention owing to their excellent device performances and facile solution processing. However, the toxicity and intrinsic instability of lead-based perovskites have limited their commercial development. Moreover, the provision of an efficient white emission from a single perovskite layer is challenging. Here, novel electrically excited white light-emitting diodes (WLEDs) based on lead-free double perovskite Cs2 AgIn0.9 Bi0.1 Cl6 quantum dots (QDs) without any phosphor are fabricated for the first time. Density functional theory calculations are carried out to clarify the mechanism of absorption and recombination in Cs2 AgIn0.9 Bi0.1 Cl6 with Bi-doping breaking the parity-forbidden transition of the direct bandgap. Microzone optical and electronic characterizations reveal that the broadband emission of Cs2 AgIn0.9 Bi0.1 Cl6 QDs originates from self-trapped excitons, and luminescent properties are unchanged after the film deposition. The QD-WLED exhibits excellent Commission Internationale de L'Eclairage color coordinates, correlated color temperature and relatively high color rendering index of (0.32, 0.32), 6432 K, and 94.5, respectively. The maximum luminance of 158 cd m-2 is achieved by triphenylphosphine oxide passivation, and this lead-free QD-WLED exhibits a superior stability in ambient air with a long T50 ≈48.53 min. Therefore, lead-free perovskite Cs2 AgIn0.9 Bi0.1 Cl6 QDs are promising candidates for use in WLEDs in the future.

9.
ACS Appl Mater Interfaces ; 13(41): 48971-48980, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34612640

RESUMEN

Perovskite-perovskite tandem solar cells have bright prospects to improve the power conversion efficiency (PCE) beyond the Shockley-Queisser (SQ) limit of single-junction solar cells. The star lead-based halide perovskites are well-recognized as suitable candidates for the front cell, thanks to their suitable band gap (∼1.8 eV), strong optical absorption, and high certified PCE. However, the toxicity of lead for the front cell and the lack of a narrow band gap (∼1.1 eV) for the rear cell seriously restrict the development of the two-junction tandem cell. To break through this bottleneck, a novel Dion-Jacobson (DJ)-type (n = 2) chalcogenide perovskite CsLaM2X7 (M = Ta, Nb; X = S, Se) has been found based on the powerful first-principles and advanced many-body perturbation GW calculations. Their excellent electronic, transport, and optical properties can be summarized as follows. (1) They are stable and environmentally friendly lead-free materials. (2) The direct band gap of CsLaTa2Se7 (0.96-1.10 eV) is much smaller than those of lead-based halide perovskites and very suitable for the rear cell in the two-junction tandem cell. (3) The carrier mobility in CsLaTa2Se7 reaches 1.6 × 103 cm2 V-1 s-1 at room temperature. (4) The absorption coefficients (3-5 × 105 cm-1) are 1 order higher than that of Si (104 cm-1). (5) The estimated PCEs of the Cs2Sb2Br8-CsLaTa2Se7 tandem cell (33.3%) and the concentrator solar cell (35.8% in 100 suns) are higher than those of the best recorded GaAs-Si tandem cell (32.8%) and the perovskite-perovskite tandem solar cell (24.8%). These energetic results strongly demonstrate that the novel lead-free chalcogenide perovskites CsLaM2X7 are good candidates for the rear cell of tandem cells.

10.
Molecules ; 26(5)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668340

RESUMEN

Sigma-1 (σ-1) receptor agonists are considered as potential treatment for stroke. TS-157 is an alkoxyisoxazole-based σ-1 receptor agonist previously discovered in our group. The present study describes TS-157 profile in a battery of tests for cerebral ischemia. Initial evaluation demonstrated the compound's safety profile and blood-brain barrier permeability, as well as its ability to induce neurite outgrowth in vitro. The neurite outgrowth was shown to be mediated via σ-1 receptor agonism and involves upregulation of ERK phosphorylation (pERK). In particular, TS-157 also significantly accelerated the recovery of motor function in rats with transient middle cerebral artery occlusion (tMCAO). Overall, the results herein support the notion that σ-1 receptor agonists are potential therapeutics for stroke and further animal efficacy studies are warranted.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Actividad Motora/efectos de los fármacos , Proyección Neuronal/efectos de los fármacos , Oxazoles/farmacología , Receptores sigma/agonistas , Recuperación de la Función/efectos de los fármacos , Animales , Infarto de la Arteria Cerebral Media/metabolismo , Masculino , Estructura Molecular , Oxazoles/síntesis química , Oxazoles/química , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor Sigma-1
11.
ChemMedChem ; 16(3): 524-536, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32964625

RESUMEN

Since its initial discovery as the basis for nicotinic acetylcholine receptor ligands, the 3-alkoxyisoxazole scaffold has been shown to be a versatile platform for the development of potent σ1 and σ2 receptor ligands. Herein we report a further SAR exploration of the 3-alkoxyisoxazole scaffold with the aim of obtaining potent σ2 receptor ligands. Various substitutions on the benzene ring and at the basic amino regions resulted in a total of 21 compounds that were tested for their binding affinities for the σ2 receptor. In particular, compound 51 [(2S)-1-(4-ammoniobutyl)-2-(((5-((3,4-dichlorophenoxy)methyl)isoxazol-3-yl)oxy)methyl)pyrrolidin-1-ium chloride] was identified as one of the most potent σ2 ligands within the series, with a Ki value of 7.9 nM. It demonstrated potent antiproliferative effects on both osteosarcoma cell lines 143B and MOS-J (IC50 values of 0.89 and 0.71 µM, respectively), relative to siramesine (IC50 values of 1.81 and 2.01 µM). Moreover, compound 51 inhibited clonal formation of osteosarcoma 143B cells at 1 µM, corresponding to half the dose required of siramesine for similar effects. The general cytotoxicity profile of compound 51 was assessed in a number of normal cell lines, including HaCaT, HAF, and LO2 cells. Furthermore, FACS analysis showed that compound 51 likely inhibits osteosarcoma cell growth by disruption of the cell cycle and promotion of apoptosis.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Óseas/tratamiento farmacológico , Isoxazoles/farmacología , Osteosarcoma/tratamiento farmacológico , Receptores sigma/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Isoxazoles/síntesis química , Isoxazoles/química , Ligandos , Estructura Molecular , Osteosarcoma/metabolismo , Osteosarcoma/patología , Receptores sigma/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas
12.
J Phys Chem Lett ; 11(7): 2689-2694, 2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32186889

RESUMEN

Quantum technologies require robust and photostable single-photon emitters. Here, room temperature operated single-photon emissions from isolated defects in aluminum nitride (AlN) films are reported. AlN films were grown on nanopatterned sapphire substrates by metal organic chemical vapor deposition. The observed emission lines range from visible to near-infrared, with highly linear polarization characteristics. The temperature-dependent line width increase shows T3 or single-exponential behavior. First-principle calculations based on density functional theory show that point defect species, such as antisite nitrogen vacancy complex (NAlVN) and divacancy (VAlVN) complexes, are considered to be an important physical origin of observed emission lines ranging from approximately 550 to 1000 nm. The results provide a new platform for on-chip quantum sources.

13.
Adv Mater ; 31(51): e1905643, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31682038

RESUMEN

Graphene, a star 2D material, has attracted much attention because of its unique properties including linear electronic dispersion, massless carriers, and ultrahigh carrier mobility (104 -105 cm2 V-1 s-1 ). However, its zero bandgap greatly impedes its application in the semiconductor industry. Opening the zero bandgap has become an unresolved worldwide problem. Here, a novel and stable 2D Ruddlesden-Popper-type layered chalcogenide perovskite semiconductor Ca3 Sn2 S7 is found based on first-principles GW calculations, which exhibits excellent electronic, optical, and transport properties, as well as soft and isotropic mechanical characteristics. Surprisingly, it has a graphene-like linear electronic dispersion, small carrier effective mass (0.04 m0 ), ultrahigh room-temperature carrier mobility (6.7 × 104 cm2 V-1 s-1 ), Fermi velocity (3 × 105 m s-1 ), and optical absorption coefficient (105 cm-1 ). Particularly, it has a direct quasi-particle bandgap of 0.5 eV, which realizes the dream of opening the graphene bandgap in a new way. These results guarantee its application in infrared optoelectronic and high-speed electronic devices.

14.
Ying Yong Sheng Tai Xue Bao ; 30(6): 1956-1964, 2019 Jun.
Artículo en Chino | MEDLINE | ID: mdl-31257768

RESUMEN

The variation of forest canopy structure and understory light caused by natural or human disturbances might account for environmental heterogeneity and species diversity in the understory. These factors play an important role in driving the structure, process and pattern in forest ecosystem. We set up two 0.25 hm2 permanent plots in secondary Betula platyphylla-Populus davidiana forests on the Taoshan Forest Farm, one of which was thinned in 2012 and the other one remained natural. The canopy images of two plots were collected by hemispherical photography technology from 2012 to 2016 and 2018. Analysis of variance and Markov matrix were applied to examine the dynamics of canopy structure, understory light, and canopy closing process after thinning. The results showed that thinning was effective in adjusting canopy structure and understory light availability. Such process lasted for a long time and the adjusting effect decreased over time. After thinning, the change rate of canopy structure and understory light decreased over time. The tree canopy quickly closed during the first three years and then reached a stable state. Understory light availability was positively correlated with canopy openness and negatively correlated with leaf area index. The correlation between understory scattered radiation and canopy structural parameters was the strongest. The correlation between canopy structure and understory light in the thinning plot was stronger than that of the control plot. After thinning, the recovery rate of canopy structure was related to the canopy openness, with larger canopy openness being accompanied with higher recovery rate. Thus, less time was required for the transfer to smaller canopy openness. The Markov matrix model could simulate changes in distributions of canopy structure and could be used to predict the dynamics of the canopy structure.


Asunto(s)
Betula , Populus , Ecosistema , Agricultura Forestal , Bosques , Árboles
15.
J Colloid Interface Sci ; 546: 20-31, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30901689

RESUMEN

Searching for promising visible-light photocatalysts for overall water splitting into hydrogen and oxygen is a very challenging task to solve the energy crisis and environment pollution. The widely-used tantalate and niobate perovskite photocatalysts have two drawbacks, i.e., the large energy band gap (∼3.2-4.6 eV) and low electron (hole) mobility 102 (101) cm2 V-1 s-1, which greatly limit their photocatalytic performance. Here, based on the powerful first-principles and accurate GW calculations, we design several novel two-dimensional (2D) Ruddlesden-Popper (RP) type (n = 1) perovskite oxynitrides A2BO3N (A = Ca, Sr, Ba and B = Ta, Nb) and their bonded heterostructures and comprehensively investigate their interlayer coupling, electronic structures, transport and photocatalytic characteristics. We find that 2D A2BO3N oxynitrides have a reduced direct band gap at Γ-point, especially for three-layer (3L) Ba2NbO3N and 1L-Sr2NbO3N/1L-Ba2NbO3N bonded heterostructure with the optimized band gap ∼2.0 eV. Compared with tantalate and niobate perovskite oxides, the electron (hole) mobility increases 1-2 orders of magnitude up to 103-104 (102-103) cm2 V-1 s-1. A fast electron-hole vertical transport across the heterointerface and remarkable electron-hole separation can be realized in 1L-Sr2NbO3N/1L-Ba2NbO3N bonded heterostructure due to its strong interface Ba-O and Sr-O bonds and type-II band offset. Compared with the well-known photocatalysts, such as BiVO4 and MoS2/g-C3N4, an improved optical absorption (8 × 104 cm-1) in A2BO3N is obtained in the visible region. The 2D RP-type perovskite oxynitrides 3L-Ba2NbO3N and 1L-Sr2NbO3N/1L-Ba2NbO3N are powerful visible-light photocatalysts for overall water splitting.

16.
Medchemcomm ; 10(12): 2131-2139, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32904145

RESUMEN

Previously we identified a series of amidoalkylindoles as potent and selective CB2 partial agonists. In the present study, we report our continuous effort to improve the aqueous solubility by introducing N atoms to the amidoalkylindole framework. Synthesis, characterization, and pharmacology evaluations were described. Bioisosteric replacements of the indole nucleus with an indazole, azaindole and benzimidazole were explored. Benzimidazole 43 (EC50,CB1 = NA, EC50,CB2 = 0.067 µM) and azaindole 24 (EC50,CB1 = NA, EC50,CB2 = 0.048 µM) were found to be potent and selective CB2 receptor partial agonists, both with improved aqueous solubility.

17.
ACS Nano ; 12(7): 7127-7133, 2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-29957923

RESUMEN

Research on hexagonal boron nitride (hBN) has been intensified recently due to the application of hBN as a promising system of single-photon emitters. To date, the single photon origin remains under debate even though many experiments and theoretical calculations have been performed. We have measured the pressure-dependent photoluminescence (PL) spectra of hBN flakes at low temperatures by using a diamond anvil cell device. The absolute values of the pressure coefficients of discrete PL emission lines are all below 15 meV/GPa, which is much lower than the pressure-induced 36 meV/GPa redshift rate of the hBN bandgap. These PL emission lines originate from atom-like localized defect levels confined within the bandgap of the hBN flakes. Interestingly, the experimental results of the pressure-dependent PL emission lines present three different types of pressure responses corresponding to a redshift (negative pressure coefficient), a blueshift (positive pressure coefficient), or even a sign change from negative to positive. Density functional theory calculations indicate the existence of competition between the intralayer and interlayer interaction contributions, which leads to the different pressure-dependent behaviors of the PL peak shift.

18.
Nanoscale ; 10(24): 11441-11451, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29882944

RESUMEN

Recently, two-dimensional (2D) few-layer InSe nanosheets have become one of the most interesting materials due to their excellent electron transport, wide bandgap tunability and good metal contact. However, their low photoluminescence (PL) efficiency and hole mobility seriously restrict their application in 2D InSe-based nano-devices. Here, by exerting a suitable compressive strain, a remarkable modification for the electronic structure and the optical and transport properties of 1- to 5-layer InSe has been confirmed by powerful GW-BSE calculations. Both top valence band inversion and indirect-to-direct bandgap transition are induced; the light polarization is reversed from E||c to E⊥c; and the PL intensity and hole mobility are enhanced greatly. Surprisingly, under 6% compressive strain, the light emission of monolayer InSe with E⊥c is allowed at 2.58 eV, which has never been observed previously. Meanwhile, for the 2D few-layer InSe, the PL with E⊥c polarization increases over 10 times in intensity and has a blue-shift at about 0.6-0.7 eV, and the hole mobility increases two orders of magnitude up to 103 cm2 V-1 s-1, as high as electron mobility. The strained few-layer InSe are thus a promising candidate for future 2D electronic and optoelectronic nano-devices.

19.
Nanotechnology ; 29(20): 205708, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29504514

RESUMEN

Quite recently, the two-dimensional (2D) InSe nanosheet has become a hot material with great promise for advanced functional nano-devices. In this work, for the first time, we perform first-principles calculations on the structural, electronic, magnetic and transport properties of 1D InSe nanoribbons with/without hydrogen or halogen saturation. We find that armchair ribbons, with various edges and distortions, are all nonmagnetic semiconductors, with a direct bandgap of 1.3 (1.4) eV for bare (H-saturated) ribbons, and have the same high electron mobility of about 103 cm2V-1s-1 as the 2D InSe nanosheet. Zigzag InSe nanoribbons exhibit metallic behavior and diverse intrinsic ferromagnetic properties, with the magnetic moment of 0.5-0.7 µ B per unit cell, especially for their single-edge spin polarization. The edge spin orientation, mainly dominated by the unpaired electrons of the edge atoms, depends sensitively on the edge chirality. Hydrogen or halogen saturation can effectively recover the structural distortion, and modulate the electronic and magnetic properties. The binding energy calculations show that the stability of InSe nanoribbons is analogous to that of graphene and better than in 2D InSe nanosheets. These InSe nanoribbons, with novel electronic and magnetic properties, are thus very promising for use in electronic, spintronic and magnetoresistive nano-devices.

20.
Sci Adv ; 3(11): e1700162, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29119136

RESUMEN

Monolayer MoS2 is a promising material for optoelectronics applications owing to its direct bandgap, enhanced Coulomb interaction, strong spin-orbit coupling, unique valley pseudospin degree of freedom, etc. It can also be implemented for novel spintronics and valleytronics devices at atomic scale. The band structure of monolayer MoS2 is well known to have a direct gap at K (K') point, whereas the second lowest conduction band minimum is located at Λ point, which may interact with the valence band maximum at K point, to make an indirect optical bandgap transition. We experimentally demonstrate the direct-to-indirect bandgap transition by measuring the photoluminescence spectra of monolayer MoS2 under hydrostatic pressure at room temperature. With increasing pressure, the direct transition shifts at a rate of 49.4 meV/GPa, whereas the indirect transition shifts at a rate of -15.3 meV/GPa. We experimentally extract the critical transition point at the pressure of 1.9 GPa, in agreement with first-principles calculations. Combining our experimental observation with first-principles calculations, we confirm that this transition is caused by the K-Λ crossover in the conduction band.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...