Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Prosthet Dent ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38942716

RESUMEN

STATEMENT OF PROBLEM: While the presence of a ferrule has been reported to be essential for post-and-core restorations, many extensively damaged teeth lack complete ferrules. The outcome of post-and-core restorations for these teeth remains uncertain. PURPOSE: The purpose of this retrospective clinical study was to assess the outcome of cast alloy post-and-cores and knife-edged crowns for the restoration of teeth lacking complete ferrules. MATERIAL AND METHODS: A total of 106 participants with endodontically treated teeth with 2 or fewer walls with ferrules who had received cast precious metal alloy post-and-cores along with knife-edged crowns between 2013 and 2022 were recalled for a clinical examination. The minimum follow-up time was 5 months after restoration, and restoration failure and the periodontal status difference between restored teeth and reference teeth were determined. Kaplan-Meier analysis was performed to obtain success curves. The influence of age, sex, jaw position, tooth type, and antagonistic dentition upon the success function was analyzed with the log-rank or Breslow test (α=.05). RESULTS: A total of 100 participants with 130 restorations were studied. The success rate of the restorations was 93.85% in a mean ±standard deviation period of 48.3 ±26.1 months. The estimated 5-year cumulative success probability was 91.61%. No significant effect on the success of restorations was found regarding age, sex, jaw position, tooth type, or antagonistic dentition (P>.05). The main failure types were post debonding, root fracture, and apical periodontitis. No statistical difference in tooth mobility (Z=-1.265, P=.206) was found between the restored and the reference teeth, but the plaque index and calculus index of the restored teeth were significantly lower than of the reference teeth (Z=-7.216, P<.001; Z=-7.044, P<.001). Teeth that had received cast post-and-cores and knife-edged crowns were found to have no significant correlation with periodontal disease (χ²=1.131, P=.288) or bleeding on probing (χ²=3.436, P=.064). CONCLUSIONS: The clinical outcomes for the restoration of teeth with 2 or fewer walls with ferrules using cast precious metal alloy post-and-cores and knife-edged crowns were favorable, exhibiting a high 5-year cumulative success probability and no increased periodontal health risk.

2.
BMC Oral Health ; 24(1): 180, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311735

RESUMEN

BACKGROUND: Retention of doctors is a global challenge and doctors working in different departments may face different problems. The study aimed to explore the turnover behavior and intention and correlated factors among Chinese dentists and medical doctors in other clinical fields. METHODS: A cross-sectional study was conducted online in 5 regions of China from March 12th to April 12th, 2020. The questionnaire included 3 parts, socio-demographic characteristics, turnover behavior and intention, and concerns about work-related factors. Chi-square test and/or Wilcoxon Mann-Whitney test were applied for comparison, and binary logistic regression was used for finding the factors. RESULTS: A total of 2428 eligible questionnaire were received, comprising 1954 responses from dentists and 474 from medical doctors. Rates of turnover behavior among dentists and medical doctors were 2.87% and 6.96%, respectively. Similarly, rates of turnover intention were 51.79% among dentists and 71.20% among medical doctors. Educational level was negatively correlated with turnover behavior of both medical doctors and dentists, and concern about salary was a unique negatively correlated factor for dentists. Age was negatively correlated with turnover intention in both medical doctors and dentists. Conversely, concerns about workload and doctor-patient relationship were positively correlated with turnover intention in both groups. Concern about salary was the distinct correlated factor of medical doctors' turnover intention, while gender and annual household income were correlated with turnover intention among dentists. CONCLUSIONS: Low turnover rate but high turnover intention rate was the current status of Chinese doctors' employment. Turnover behavior and intention were more optimistic among dentists than medical doctors. Factors related to turnover behavior and turnover intention were not identical among dentists and medical doctors. Therefore, personalized retention measures were necessary for dentists and medical doctors.


Asunto(s)
Intención , Relaciones Médico-Paciente , Humanos , Estudios Transversales , Satisfacción en el Trabajo , China , Odontólogos , Encuestas y Cuestionarios
3.
Small ; 20(10): e2306344, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37875719

RESUMEN

The coupling of photocatalytic hydrogen production and selective oxidation of benzylamine is a topic of significant research interest. However, enhancing the bifunctional photocatalytic activity in this context is still a major challenge. The construction of Z-scheme heterojunctions is an effective strategy to enhance the activity of bifunctional photocatalysts. Herein, a p-n type direct Z-scheme heterojunction CuS/TiO2 is constructed using metal-organic framework (MOF)-derived TiO2 as a substrate. The carrier density is measured by Mott-Schottky under photoexcitation, which confirms that the Z-scheme electron transfer mode of CuS/TiO2 is driven by the diffusion effect caused by the carrier concentration difference. Benefiting from efficient charge separation and transfer, photogenerated electrons, and holes are directedly transferred to active oxidation and reduction sites. CuS/TiO2 also exhibits excellent bifunctional photocatalytic activity without noble metal cocatalysts. Among them, the H2 evolution activity of the CuS/TiO2 is found to be 17.1 and 29.5 times higher than that of TiO2 and CuS, respectively. Additionally, the yields of N-Benzylidenebenzylamine (NBB) are 14.3 and 47.4 times higher than those of TiO2 and CuS, respectively.

5.
BMC Oral Health ; 23(1): 358, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270488

RESUMEN

BACKGROUND: Artificial intelligence (AI) has been introduced to interpret the panoramic radiographs (PRs). The aim of this study was to develop an AI framework to diagnose multiple dental diseases on PRs, and to initially evaluate its performance. METHODS: The AI framework was developed based on 2 deep convolutional neural networks (CNNs), BDU-Net and nnU-Net. 1996 PRs were used for training. Diagnostic evaluation was performed on a separate evaluation dataset including 282 PRs. Sensitivity, specificity, Youden's index, the area under the curve (AUC), and diagnostic time were calculated. Dentists with 3 different levels of seniority (H: high, M: medium, L: low) diagnosed the same evaluation dataset independently. Mann-Whitney U test and Delong test were conducted for statistical analysis (ɑ=0.05). RESULTS: Sensitivity, specificity, and Youden's index of the framework for diagnosing 5 diseases were 0.964, 0.996, 0.960 (impacted teeth), 0.953, 0.998, 0.951 (full crowns), 0.871, 0.999, 0.870 (residual roots), 0.885, 0.994, 0.879 (missing teeth), and 0.554, 0.990, 0.544 (caries), respectively. AUC of the framework for the diseases were 0.980 (95%CI: 0.976-0.983, impacted teeth), 0.975 (95%CI: 0.972-0.978, full crowns), and 0.935 (95%CI: 0.929-0.940, residual roots), 0.939 (95%CI: 0.934-0.944, missing teeth), and 0.772 (95%CI: 0.764-0.781, caries), respectively. AUC of the AI framework was comparable to that of all dentists in diagnosing residual roots (p > 0.05), and its AUC values were similar to (p > 0.05) or better than (p < 0.05) that of M-level dentists for diagnosing 5 diseases. But AUC of the framework was statistically lower than some of H-level dentists for diagnosing impacted teeth, missing teeth, and caries (p < 0.05). The mean diagnostic time of the framework was significantly shorter than that of all dentists (p < 0.001). CONCLUSIONS: The AI framework based on BDU-Net and nnU-Net demonstrated high specificity on diagnosing impacted teeth, full crowns, missing teeth, residual roots, and caries with high efficiency. The clinical feasibility of AI framework was preliminary verified since its performance was similar to or even better than the dentists with 3-10 years of experience. However, the AI framework for caries diagnosis should be improved.


Asunto(s)
Caries Dental , Diente Impactado , Diente , Humanos , Radiografía Panorámica , Inteligencia Artificial , Caries Dental/diagnóstico por imagen
6.
J Hazard Mater ; 452: 131345, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37027923

RESUMEN

In this paper, we prepared composites by confining S, O co-doped C3N4 short nanotubes (SOT) into the slit holes of expanded graphite (EG). The prepared SOT/EG composites had hierarchical pores. Macroporous and mesoporous were conducive to the permeation of heavy metal ions (HMIs) solution, while microporous were favorable for HMIs capture. In addition, EG had excellent adsorption and conductive properties. By leveraging their synergistic effect, SOT/EG composites could be used for electrochemical detection and removal of HMIs simultaneously. The excellent HMIs electrochemical detection and removal performances were due to the unique 3D microstructure and the increase of active sites such as S and O. When SOT/EG composites were prepared into modified electrodes, the limit of detections (LODs) of Pb2+ and Hg2+ were 0.038 and 0.051 µg L-1 for simultaneous detection and 0.045 and 0.057 µg L-1 for individual detection. When SOT/EG composites were used as adsorbents, the equilibrium adsorption capacity of Pb2+ and Hg2+ solution of 10 mg L-1 could reach 228.0 and 313.1 mg g-1, and the adsorption efficiency was above 90%. Due to the low raw materials cost and simple preparation method, SOT/EG composite is a very promising bifunctional material for HMIs electrochemical detection and removal.

7.
ACS Omega ; 7(7): 5870-5882, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35224348

RESUMEN

The present study focuses on the strategy of employing an electrochemical sensor with a porous polyethylenimine (PEI)-functionalized Co3O4/reduced graphene oxide (rGO) nanocomposite (NCP) to detect heavy metal ions (HMIs: Cd2+, Pb2+, Cu2+, and Hg2+). The porous PEI-functionalized Co3O4/rGO NCP (rGO·Co3O4·PEI) was prepared via a hydrothermal method. The synthesized NCP was based on a conducting polymer PEI, rGO, nanoribbons of Co3O4, and highly dispersed Co3O4 nanoparticles (NPs), which have shown excellent performance in the detection of HMIs. The as-prepared PEI-functionalized rGO·Co3O4·PEI NCP-modified electrode was used for the sensing/detection of HMIs by means of both square wave anodic stripping voltammetry (SWV) and differential normal pulse voltammetry (DNPV) methods for the first time. Both methods were employed for the simultaneous detection of HMIs, whereas SWV was employed for the individual analysis as well. The limits of detection (LOD; 3σ method) for Cd2+, Pb2+, Cu2+, and Hg2+ determined using the rGO·Co3O4·PEI NCP-modified electrode were 0.285, 1.132, 1.194, and 1.293 nM for SWV, respectively. Similarly, LODs of Cd2+, Pb2+, Cu2+, and Hg2+ were 1.069, 0.285, 2.398, and 1.115 nM, respectively, by DNPV during simultaneous analysis, whereas they were 0.484, 0.878, 0.462, and 0.477 nM, respectively, by SWV in individual analysis.

8.
J Hazard Mater ; 423(Pt B): 127120, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34530272

RESUMEN

The N-doped three-dimensional (3D) needle bridge connection core-shell structure N-CoS2@Co3O4 synthesized in this work was prepared by simple hydrothermal and high-temperature vulcanization methods. The optimized N-CoS2@Co3O4-2 composite response to NO2 is 62.3-100 ppm, a response time of 1.3 s, the recovery time of 17.98 s, the detection limit of 5 ppb and stability of as long as 10 weeks at room temperature (RT). Its excellent NO2 sensing performance is attributed to the unique porous and bridge connection core-shell structure of the N-CoS2@Co3O4-2 with high specific surface area, interconnected internal channels, abundant exposed S edge active sites, and high catalytic performance promoted by N-doping. This simple manufacturing method of high-performance sensing materials paves the way for the design of N-doped bridge connection core-shell structures.

9.
J Hazard Mater ; 416: 125830, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33865111

RESUMEN

The unique properties of heterostructure materials make them become a promising candidate for high-performance room-temperature (RT) NO2 sensing. Herein, a p-n heterojunction consisting of two-dimensional (2D) MoS2 nanoflakes vertically grown on one-dimensional (1D) SnO2 nanotubes (NTs) was fabricated via electrospinning and subsequent hydrothermal route. The sulfur edge active sites are fully exposed in the MoS2@SnO2 heterostructure due to the vertically oriented thin-layered morphology features. Moreover, the interface of p-n heterojunction provides an electronic transfer channel from SnO2 to MoS2, which enables MoS2 act as the generous electron donor involved in NO2 gas senor detection. As a result, the optimized MoS2@SnO2-2 heterostructure presents an impressive sensitivity and selectivity for NO2 gas detection at RT. The response value is 34.67 (Ra/Rg) to 100 ppm, which is 26.5 times to that of pure SnO2. It also exhibits a fast response and recovery time (2.2 s, 10.54 s), as well as a low detection limit (10 ppb) and as long as 20 weeks of stability. This simple fabrication of high-performance sensing materials may facilitate the large-scale production of RT NO2 gas sensors.

10.
J Hazard Mater ; 405: 124252, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33082020

RESUMEN

This work illustrates a simple polymer thermal treatment strategy to develop high-dispersed Fe2O3/Fe nanoparticles residing in honeycomb-like N-doped graphitic carbon (Fe2O3/Fe@N-GC). The as-prepared Fe2O3/Fe@N-GC composites consist of three-dimensional (3D) strutted interconnective graphitic carbon frame, which would not only refrain from restacking and facilitate the charge transfer, but also provide more reaction interface between gas molecules and materials. Benefiting from the synergistic merits of Fe2O3/Fe, N-doping graphitic carbon, high surface area and unique 3D architectures, the optimal Fe2O3/Fe@N-GC presents impressive sensitivity and selectivity for NO2 gas detection at room temperature with the response of 25.48-100 ppm, response time of 2.13 s, recovery time of 11.73 s, detection limit of 10 ppb and as long as 60 days of stability. As a result, the present Fe2O3/Fe@N-GC composite with an easy fabrication method and high sensitivity, selectivity, stabitliy towards NO2 at RT would inspire various designs based on the 3D honeycomb structure for more real applications in gas sensors.

11.
Nanoscale ; 12(47): 24285-24295, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33295930

RESUMEN

WO3 with a mixed phase (m-WO3 and h-WO3) was synthesized by facile hydrothermal and annealing methods using biomass carbon (Hemp stems) as a sacrificial template. The biomorphic hierarchical structure effectively enhanced the dispersion of WO3 microspheres, which increased the contact area for the target gas molecule. The control of the mixed phase compositions was achieved by space confinement of biomass carbon and heat treatments. The synergistic effect of the mixed phase increased the mobility of carriers and promoted the separation and transport of electrons and holes. Thus, it improved the adsorption-diffusion capacity of NO2 molecules and enhanced the sensor performance at lower operating temperature effectively. The B-WO3-04 (450 °C, 4 h) exhibited an ultra-high response (Ra/Rg = 71.07) towards 100 ppm NO2 gas with excellent repeatability and appreciable long-term stability at room temperature. The significant improvement of B-WO3-04 gas sensing performance was mainly due to its unique hierarchical structure and the optimal proportion of the mixed phase composition.

12.
Nanomaterials (Basel) ; 10(11)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105722

RESUMEN

We demonstrate a nonvolatile memristor based on Co-Al-layered double hydroxide (Co-Al LDH). We also introduce a memristor that has a hexazinone-adsorbing Co-Al LDH composite active layer. Memristor characteristics could be modulated by adsorbing hexazinone with Co-Al LDHs in the active layer. While different, Co-Al LDH-based memory devices show gradual current changes, and the memory device with small molecules of adsorbed hexazinone undergo abrupt changes. Both devices demonstrate programmable memory peculiarities. In particular, both memristors show rewritable resistive switching with electrical bistability (>105 s). This research manifests the promising potential of 2D nanocomposite materials for adsorbing electroactive small molecules and rectifying resistive switching properties for memristors, paving a way for design of promising 2D nanocomposite memristors for advanced device applications.

13.
J Hazard Mater ; 393: 122325, 2020 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-32126422

RESUMEN

SnS2 nanosheets (NSs) have become an ideal candidate for high performance gas sensors due to their unique sensing properties. However, the restacking and aggregation in the process of sensor manufacturing have great influence on the gas sensing performance. In this study, we synthesized a novel heterojunction of the flower-like porous SnS2 NSs with edge exposed MoS2 nanospheres via a facile hydrothermal method and sensitive response has achieved at room temperature (27℃). After functionalization, the SMS-Ⅱ showed excellent response (Ra/Rg = 25.9-100 ppm NO2), which is 22.3 times higher than that of the pristine SnS2 NSs. The sensor also has the characteristics of short response time of 2 s, excellent base line recovery (28.2 s), long-term stability and reliability within 16 weeks, good selectivity and low detection concentration of only 50 ppb. The p-n heterojunction formed between the edge-exposed spherical MoS2 and the 3D flower-like SnS2 NSs has a synergistic effect, providing a highly active sites for the adsorption of NO2 gas, which greatly enhance the sensitivity of the sensor. Simple fabrication and excellent gas sensing performance of the SnS2/MoS2 heterostructure nanomaterials (NMs) will highly effective for commercial gas sensing application.

14.
RSC Adv ; 10(57): 34466-34473, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35514368

RESUMEN

By fine tuning the metal mole ratio, CoAl-LDHs (CA) with a 2D nanosheet structure were successfully prepared via a one-step hydrothermal method using urea as both precipitator and pore-forming agent. The morphology of CA samples shows uniform and thin porous hexagonal nanosheets. In particular, CA2-1, prepared with the 2 : 1 molar ratio for Co and Al, respectively, has the highest surface area (54 m2 g-1); its average transverse size of platelets is 2.54 µm with a thickness of around 19.30 nm and inter-plate spacing of about 0.2 µm. The sample exhibits a high sensing performance (response value of 17.09) towards 100 ppm NO x , fast response time (4.27 s) and a low limit of detection (down to 0.01 ppm) at room temperature. Furthermore, CA2-1 shows long -term stability (60 days) and a better selectivity towards NO x at room temperature. The excellent performance of the fabricated sensor is attributed to the special hexagonal structure of the 2D thin nanosheets with abundant mesopores, where the active sites provide fast adsorption and transportation channels, promote oxygen chemisorption, and eventually decrease the diffusion energy barrier for NO x molecules. Furthermore, hydrogen bonds between water molecules and OH- could serve as a bridge, thus providing a channel for rapid electron transfer. This easy synthetic approach and good gas sensing performance allow CoAl-LDHs to be great potential materials in the field of NO x gas sensing.

15.
Nanoscale ; 11(17): 8554-8564, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-30990493

RESUMEN

MoS2 nanosheets (NSs) are a promising gas sensing material at room temperature (RT) due to their unique properties and structures. Unfortunately, the activity of pure MoS2 NSs is highly affected by the adsorption of atmospheric oxygen, which strongly influences the stability of MoS2 sensing devices and significantly hinders the practical applications of these sensors in air. Heterostructure formation may be an effective approach to modulate the intrinsic electronic properties of MoS2 NSs. In this study, thin MoO2 nanoplates (NPs) were decorated with multilayer MoS2 NSs via one-step controllable sulfurization to fabricate MoS2@MoO2 nanonetworks, and remarkable gas sensing performance was achieved with high stability in air at RT. In particular, the MSO-2 (1 h sulfurization of the MoO2 NPs) nanonetworks with n-p heterojunctions demonstrated a high response of 19.4 to 100 ppm NO2 in a short period of time (1.06 s) with rapid recovery (22.9 s) to the baseline. The excellent gas sensing performance of the MSO-2 sensor is attributed to the synergistic effect of the MoS2 NSs and thin MoO2 NPs, which created heterojunctions/defects to easily transfer electrons and provide more active sites for NO2 gas. This simple synthetic method to design and fabricate n-p heterojunction sensors will be effective in commercial gas sensing applications.

16.
RSC Adv ; 9(16): 8768-8777, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35517683

RESUMEN

To develop an ultra-sensitive and selective NO x gas sensor with an ultra-low detection limit, expanded graphite/NiAl layered double hydroxide (EG/NA) nanowires were synthesized by using hydrothermal method with EG as a template and adjusting the amount of urea in the reaction. X-ray diffraction and transmission electron microscopy showed EG/NA3 nanowires with a diameter of 5-10 nm and a length greater than 100 nm uniformly dispersed on the expanded graphite nanosheet (>8 layers). The synergy between NiAl layered double hydroxide (NiAl-LDH) and expanded graphite (EG) improved the gas sensing properties of the composites. As expected, gas sensing tests showed that EG/NA composites have superior performance over pristine NiAl-LDH. In particular, the EG/NA3 nanowire material exhibited an ultra-high response (R a/R g = 17.65) with ultra-fast response time (about 2 s) to 100 ppm NO x , an ultra-low detection limit (10 ppb) and good selectivity at room temperature (RT, 24 ± 2 °C), which could meet a variety of application needs. Furthermore, the enhancement of the sensing response was attributed to the nanowire structure formed by NiAl-LDH in the EG interlayer and the conductive nanonetwork of interwoven nanowires.

17.
RSC Adv ; 9(38): 21911-21921, 2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35518878

RESUMEN

The 3D flower-like CoAl-layered double hydroxide (CoAl-LDH) was successfully prepared using the functional template agent of fluoride ions via a facile one-step hydrothermal route. Various techniques proved that all the samples presented 3D flower-like microstructural morphology. Representatively, the CA-2 sample, which was synthesized with the molar ratio of Co : Al of 3.65 : 1, had considerably abundant pores in its thin nanosheets. The average pore size was 2-4 nm, the specific surface area was equal to 49.45 m2 g-1, and the thickness of nanosheets was approximately 3.068 nm. The CA-2 sample showed an excellent response to 0.01-100 ppm NO2 with ultrafast response/recovery time at room temperature (RT). The detection limit of the sensor even reached 10 ppb. The superior gas sensing performance could be attributed to the synergistic effects of the functional template agent of fluoride ions and specific porous 3D flower-like nanostructure. The current study showed that the 3D flower-like CoAl-LDHs might a promising material in practical detection of NO2 at RT.

18.
J Hazard Mater ; 363: 335-345, 2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-30321838

RESUMEN

Synthesizing a gas sensor based on heterostructured nanomaterials (NMs) via a controllable morphology by a facile hydrothermal method is an area of frontier research. In the present work, we designed a facile strategy to synthesize a controllable morphology and composition for three component heterojunctions (MoS2-Bi2O3-Bi2S3) NMs using different hydrothermal reaction times. The Bi2S3 easily form as an intermediate phase due to the strong interaction of the Bi2O3 with MoS2 nanosheets (NSs). The as fabricated heterojunctions MB-5 NMs exhibited a sensitive response to NOx gas (Ra/Rg = 10.7 at 50 ppm), with an ultra-fast response time of only 1 s (s) at room temperature (RT) in air. The detection limit was predicted to be as low as 50 ppb. This sensational behaviour of the sensor reveals the outstanding morphological structure and synergistic effect of the MoS2 NSs with Bi2O3 nanoparticles (NPs), which was realized by the flow of electrons across MoS2-Bi2O3-Bi2S3 interfaces through band energy alignment.

19.
J Colloid Interface Sci ; 537: 79-90, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30423491

RESUMEN

Mesoporous palladium oxide (PdO)-functionalized tin dioxide (SnO2) composite nanotubes (SPCTs) were prepared via one-step synthesis by electrospinning technology using ethanol and N,N-dimethylformamide (DMF) as solvents. Compared with pure SnO2 nanotubes, there were abundant mesopores and multiheterojunctions in PdO-functionalized SnO2 nanotubes. The sample with the molar ratio of SnO2:PdO of 100:3 (3-SPCT) exhibited excellent response (∼20.30) as a sensor with fast gas response speed (∼1.33 s) to 100 ppm nitrogen dioxide (NO2) at room temperature (RT), and the detection limit reached to 10 ppb. The improved gas sensing performance of the 3-SPCT sensor was mainly attributed to the synergistic effect: the unique SnO2 tubular structure and well-dispersed mesopores provided the gas diffusion and adsorption channels, oxygen defects and chemisorbed oxygen were taken as the electron trap and charge transfer active sites, and a large number of heterojunctions acted as electron transport channels, thereby increasing the transfer rate.

20.
ACS Sens ; 3(8): 1576-1583, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-30019583

RESUMEN

Expanded few-layer black phosphorus nanosheets (FL-BP NSs) were functionalized by branched polyethylenimine (PEI) using a simple noncovalent assembly to form air-stable overlayers (BP-PEI), and a Co3O4@BP-PEI composite was designed and synthesized using a hydrothermal method. The size of the highly dispersed Co3O4 nanoparticles (NPs) on the FL-BP NSs can be controlled. The BP-C5 (190 °C for 5 h) sensor, with 4-6 nm Co3O4 NPs on the FL-BP NSs, exhibited an ultrahigh sensitivity of 8.38 and a fast response of 0.67 s to 100 ppm of NO x at room temperature in air, which is 4 times faster than the response of the FL-BP NS sensor, and the lower detection limit reached 10 ppb. This study points to a promising method for tuning properties of BP-based composites by forming air-stable overlayers and highly dispersed metal oxide NPs for use in high-performance gas sensors.


Asunto(s)
Cobalto/química , Técnicas Electroquímicas/métodos , Gases/química , Nanopartículas del Metal/química , Óxidos de Nitrógeno/análisis , Óxidos/química , Fósforo/química , Electrodos , Límite de Detección , Polietileneimina/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...