Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Gastroenterol Hepatol ; 5(4): 611-625, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29930981

RESUMEN

BACKGROUND & AIMS: Clostridium difficile toxin A (TcdA) and C difficile toxin toxin B (TcdB), the major virulence factors of the bacterium, cause intestinal tissue damage and inflammation. Although the 2 toxins are homologous and share a similar domain structure, TcdA is generally more inflammatory whereas TcdB is more cytotoxic. The functional domain of the toxins that govern the proinflammatory activities of the 2 toxins is unknown. METHODS: Here, we investigated toxin domain functions that regulate the proinflammatory activity of C difficile toxins. By using a mouse ilea loop model, human tissues, and immune cells, we examined the inflammatory responses to a series of chimeric toxins or toxin mutants deficient in specific domain functions. RESULTS: Blocking autoprocessing of TcdB by mutagenesis or chemical inhibition, while reducing cytotoxicity of the toxin, significantly enhanced its proinflammatory activities in the animal model. Furthermore, a noncleavable mutant TcdB was significantly more potent than the wild-type toxin in the induction of proinflammatory cytokines in human colonic tissues and immune cells. CONCLUSIONS: In this study, we identified a novel mechanism of regulating the biological activities of C difficile toxins in that cysteine protease-mediated autoprocessing regulates toxins' proinflammatory activities. Our findings provide new insight into the pathogenesis of C difficile infection and the design of therapeutics against the disease.

2.
Pathog Dis ; 74(7)2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27502696

RESUMEN

Clostridium difficile infection (CDI) is the most common cause of antibiotic-associated diarrhea and colitis in developed countries. The disease is mainly mediated via two major exotoxins TcdA and TcdB secreted by the bacterium. We have previously developed a novel, potently neutralizing, tetravalent and bispecific heavy-chain-only single domain (VHH) antibody to both TcdA and TcdB (designated as ABA) that reverses fulminant CDI in mice. Since ABA has a short serum half-life, in this study a replication-deficient recombinant adenovirus expressing ABA was generated and the long-lasting expression of functional ABA was demonstrated in vitro and in vivo Mice transduced with one dose of the adenovirus displayed high levels of serum ABA for more than1 month and were fully protected against systemic toxin challenges. More importantly, the ABA delivered by the adenovirus protected mice from both primary and recurrent CDI. Thus, replication-deficient adenoviral vector may be used to deliver neutralizing antibodies against the toxins in order to prevent CDI and recurrence.


Asunto(s)
Adenoviridae/genética , Anticuerpos Neutralizantes/genética , Clostridioides difficile/inmunología , Infecciones por Clostridium/inmunología , Vectores Genéticos/genética , Anticuerpos de Dominio Único/genética , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Toxinas Bacterianas/inmunología , Línea Celular , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/mortalidad , Infecciones por Clostridium/terapia , Modelos Animales de Enfermedad , Enterotoxinas/inmunología , Expresión Génica , Vectores Genéticos/administración & dosificación , Inmunoterapia , Ratones , Pruebas de Neutralización , Anticuerpos de Dominio Único/sangre , Anticuerpos de Dominio Único/inmunología
3.
PLoS One ; 10(4): e0124235, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25885671

RESUMEN

Toxemia can develop in Clostridium difficile-infected animals, and correlates with severe and fulminant disease outcomes. Circumstantial evidence suggests that toxemia may occur in patients with C. difficile infection (CDI), but positive diagnosis is extremely rare. We analyzed the potential for C. difficile toxemia in patients, determined its characteristics, and assessed challenges. C. difficile toxins in serum from patients were tested using an ultrasensitive cell-based assay and further confirmed by Rac1 glucosylation assay. The factors that hinder a diagnosis of toxemia were assessed, including investigation of toxin stability, the level of toxins-specific neutralizing antibodies in sera and its effect on diagnosis limits. CDI patients develop detectable toxemia in some cases (2.3%). Toxins were relatively stable in stored sera. Neutralizing anti-toxin antibodies were present during infection and positively correlated with the diagnosis limits. Thus, the masking effect of toxin-specific neutralizing antibodies is the major obstacle in diagnosing C. difficile toxemia using cell-based bioassays.


Asunto(s)
Proteínas Bacterianas/sangre , Toxinas Bacterianas/sangre , Clostridioides difficile/patogenicidad , Enterocolitis Seudomembranosa/complicaciones , Enterotoxinas/sangre , Toxemia/etiología , Animales , Antibacterianos/uso terapéutico , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Toxinas Bacterianas/química , Toxinas Bacterianas/inmunología , Bioensayo , Conservación de la Sangre , Chlorocebus aethiops , Clostridioides difficile/inmunología , Diverticulitis del Colon/complicaciones , Enterocolitis Seudomembranosa/sangre , Enterocolitis Seudomembranosa/tratamiento farmacológico , Enterotoxinas/química , Enterotoxinas/inmunología , Reacciones Falso Negativas , Femenino , Glicosilación , Humanos , Huésped Inmunocomprometido , Inmunoglobulina G/sangre , Traumatismo Múltiple/complicaciones , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Factores de Riesgo , Toxemia/sangre , Toxemia/diagnóstico , Toxemia/inmunología , Células Vero , Adulto Joven , Proteína de Unión al GTP rac1/metabolismo
4.
Pathog Dis ; 73(3)2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25743476

RESUMEN

Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis mainly through two exotoxins TcdA and TcdB that target intestinal epithelial cells. Dendritic cells (DCs) play an important role in regulating intestinal inflammatory responses. In the current study, we explored the interaction of TcdB-intoxicated epithelial cells with mouse bone marrow-derived DCs. TcdB induced cell death and heat shock protein translocation in mouse intestinal epithelial CT26 cells. The intoxicated epithelial cells promoted the phagocytosis and the TNF-α secretion by DCs. Incubation with TcdB-intoxicated CT26 cells stimulated DC maturation. Moreover, TcdB-treated CT26 cells induced DC immigration when they were injected into mice subcutaneously. Taken together, these data demonstrate that TcdB-intoxicated intestinal epithelial cells are able to stimulate DC activation in vitro and attract DCs in vivo, indicating that epithelial cells may be able to regulate DC activation under the exposure of TcdB during C. difficile infection.


Asunto(s)
Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Comunicación Celular , Células Dendríticas/inmunología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Animales , Muerte Celular/efectos de los fármacos , Diferenciación Celular , Movimiento Celular , Células Dendríticas/fisiología , Células Epiteliales/fisiología , Proteínas de Choque Térmico/metabolismo , Masculino , Ratones Endogámicos BALB C , Fagocitosis , Transporte de Proteínas , Factor de Necrosis Tumoral alfa/metabolismo
5.
Bioelectrochemistry ; 101: 153-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25460611

RESUMEN

This work presents a sandwich-type electrochemical impedance immunosensor for detecting Clostridium difficile toxin A (TcdA) and toxin B (TcdB). Single domain antibody conjugated gold nanoparticles were applied to amplify the detection signal. Gold nanoparticles (Au NPs) were characterized by transmission electron microscopy and UV­vis spectra. The electron transfer resistance (Ret) of the working electrode surface was used as a parameter in the measurement of the biosensor. With the increase of the concentration of toxins from 1 pg/mL to 100 pg/mL, a linear relationship was observed between the relative electron transfer resistance and toxin concentration. In addition, the detection signal was enhanced due to the amplification effect. The limit of detection for TcdA and TcdB was found to be 0.61 pg/mL and 0.60 pg/mL respectively at a signal-to-noise ratio of 3 (S/N = 3). This method is simple, fast and ultrasensitive, thus possesses a great potential for clinical applications in the future.


Asunto(s)
Proteínas Bacterianas/análisis , Toxinas Bacterianas/análisis , Técnicas Biosensibles/métodos , Impedancia Eléctrica , Enterotoxinas/análisis , Nanopartículas/química , Anticuerpos de Dominio Único/química , Anticuerpos Inmovilizados/química , Anticuerpos Inmovilizados/inmunología , Proteínas Bacterianas/inmunología , Toxinas Bacterianas/inmunología , Técnicas Biosensibles/instrumentación , Enterotoxinas/inmunología , Diseño de Equipo , Heces/microbiología , Oro/química , Humanos , Inmunoensayo/instrumentación , Inmunoensayo/métodos , Límite de Detección , Microscopía Electrónica de Transmisión , Anticuerpos de Dominio Único/inmunología
6.
Infect Immun ; 83(2): 502-13, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25404023

RESUMEN

TcdB is one of the key virulence factors of Clostridium difficile that is responsible for causing serious and potentially fatal colitis. The toxin contains at least two enzymatic domains: an effector glucosyltransferase domain for inactivating host Rho GTPases and a cysteine protease domain for the delivery of the effector domain into host cytosol. Here, we describe a novel intrabody approach to examine the role of these enzymes of TcdB in cellular intoxication. By screening a single-domain heavy chain (V(H)H) library raised against TcdB, we identified two V(H)H antibodies, 7F and E3, that specifically inhibit TcdB cysteine protease and glucosyltransferase activities, respectively. Cytoplasmic expression of 7F intrabody in Vero cells inhibited TcdB autoprocessing and delayed cellular intoxication, whereas E3 intrabody completely blocked the cytopathic effects of TcdB holotoxin. These data also demonstrate for the first time that toxin autoprocessing occurs after cysteine protease and glucosyltransferase domains translocate into the cytosol of target cells. We further determined the role of the enzymatic activities of TcdB in in vivo toxicity using a sensitive systemic challenge model in mice. Consistent with these in vitro results, a cysteine protease noncleavable mutant, TcdB-L543A, delayed toxicity in mice, whereas glycosyltransferase-deficient TcdB demonstrated no toxicity up to 500-fold of the 50% lethal dose (LD50) when it was injected systemically. Thus, glucosyltransferase but not cysteine protease activity is critical for TcdB-mediated cytopathic effects and TcdB systemic toxicity, highlighting the importance of targeting toxin glucosyltransferase activity for future therapy.


Asunto(s)
Proteínas Bacterianas/inmunología , Toxinas Bacterianas/inmunología , Clostridioides difficile/patogenicidad , Proteasas de Cisteína/metabolismo , Enterocolitis Seudomembranosa/microbiología , Glucosiltransferasas/metabolismo , Anticuerpos de Dominio Único/inmunología , Secuencia de Aminoácidos , Animales , Línea Celular , Chlorocebus aethiops , Clostridioides difficile/enzimología , Inhibidores de Cisteína Proteinasa/inmunología , Glucosiltransferasas/antagonistas & inhibidores , Humanos , Cadenas Pesadas de Inmunoglobulina/inmunología , Ratones , Estructura Terciaria de Proteína , Células Vero , Factores de Virulencia/inmunología
7.
PLoS One ; 9(10): e110826, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25340750

RESUMEN

Clostridium difficile toxin B (TcdB) is a key virulence factor of bacterium and induces intestinal inflammatory disease. Because of its potent cytotoxic and proinflammatory activities, we investigated the utility of TcdB in developing anti-tumor immunity. TcdB induced cell death in mouse colorectal cancer CT26 cells, and the intoxicated cells stimulated the activation of mouse bone marrow-derived dendritic cells and subsequent T cell activation in vitro. Immunization of BALB/c mice with toxin-treated CT26 cells elicited potent anti-tumor immunity that protected mice from a lethal challenge of the same tumor cells and rejected pre-injected tumors. The anti-tumor immunity generated was cell-mediated, long-term, and tumor-specific. Further experiments demonstrated that the intact cell bodies were important for the immunogenicity since lysing the toxin-treated tumor cells reduced their ability to induce antitumor immunity. Finally, we showed that TcdB is able to induce potent anti-tumor immunity in B16-F10 melanoma model. Taken together, these data demonstrate the utility of C. difficile toxin B for developing anti-tumor immunity.


Asunto(s)
Proteínas Bacterianas/farmacología , Toxinas Bacterianas/farmacología , Inmunidad/efectos de los fármacos , Melanoma/inmunología , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citotoxicidad Inmunológica/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Inmunización , Inmunomodulación/efectos de los fármacos , Interferón gamma/biosíntesis , Interleucina-2/metabolismo , Masculino , Melanoma/patología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología
8.
J Infect Dis ; 210(6): 964-72, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24683195

RESUMEN

The incidence of Clostridium difficile infection (CDI) and associated mortality have increased rapidly worldwide in recent years. Therefore, it is critical to develop new therapies for CDI. In this study, we generated a novel, potently neutralizing, tetravalent, and bispecific antibody composed of 2 heavy-chain-only VH (VHH) binding domains against both TcdA and TcdB (designated "ABA") that reverses fulminant CDI in mice infected with an epidemic 027 strain after a single injection of the antibody. We demonstrated that ABA bound to both toxins simultaneously and displayed a significantly enhanced neutralizing activity both in vitro and in vivo. Additionally, ABA was able to broadly neutralize toxins from clinical C. difficile isolates that express both TcdA and TcdB but failed to neutralize the toxin from TcdA(-)TcdB(+) C. difficile strains. This study thus provides a rationale for the development of multivalent VHHs that target both toxins and are broadly neutralizing for treating severe CDI.


Asunto(s)
Anticuerpos Antibacterianos/uso terapéutico , Proteínas Bacterianas/inmunología , Toxinas Bacterianas/inmunología , Clostridioides difficile/inmunología , Enterocolitis Seudomembranosa/prevención & control , Enterotoxinas/inmunología , Animales , Sitios de Unión de Anticuerpos/inmunología , Enterocolitis Seudomembranosa/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Ratones , Pruebas de Neutralización
9.
Pathog Dis ; 70(1): 17-27, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23913680

RESUMEN

Dendritic cells (DCs) are the antigen-presenting cells capable of activating naïve T cells. Although CD4+ T cells are crucial for Cryptosporidium parvum clearance, little is known about the role of DCs in the immune response to this parasite. In this study, the interaction between mouse DCs and C. parvum was investigated both in vitro and in vivo. For in vitro experiments, mouse bone marrow-derived dendritic cells (BMDCs) derived from wild-type C57B1/6 or MyD88-/- or C3H/HeJ mice and DC cell line DC2.4 were pulsed with C. parvum. Active invasion of parasites was demonstrated by parasite colocalization with host cell membranes and actin-plaque formation at the site of attachment. DC activation induced by the parasite invasion was demonstrated by upregulation of costimulatory molecules CD40, CD80, and CD86, as well as inflammatory cytokines IL-12, TNF-α, and IL-6. BMDCs derived from MyD88-/- and C3H/HeJ mice failed to produce IL-12 in response to C. parvum, suggesting the importance of TLR-dependent signaling pathway specially presence of a functional TLR4 pathway, for C. parvum-induced cytokine production. In vivo experiments showed that both parasite antigens and live parasites were transported to mice mesenteric lymph nodes. All together, these data suggest that DCs play a key role in host immune responses to C. parvum and pathogenesis of the disease.


Asunto(s)
Criptosporidiosis/inmunología , Cryptosporidium parvum/inmunología , Células Dendríticas/inmunología , Ganglios Linfáticos/inmunología , Animales , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/parasitología , Línea Celular , Membrana Celular/inmunología , Membrana Celular/parasitología , Criptosporidiosis/parasitología , Células Dendríticas/parasitología , Interleucina-12/inmunología , Interleucina-6/inmunología , Ganglios Linfáticos/parasitología , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología , Factor de Necrosis Tumoral alfa/inmunología
10.
Pathog Dis ; 67(1): 11-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23620115

RESUMEN

Clostridium difficile virulence requires secretion of two exotoxins: TcdA and TcdB. The precise mechanism of toxin uptake and delivery is undefined, but current models predict that the cysteine protease domain (CPD)-mediated autocleavage and release of glucosyltransferase domain (GTD) are crucial for intoxication. To determine the importance of CPD-mediated cleavage to TcdB cytotoxicity, we generated two mutant toxins--TcdB-C698S and TcdB-H653A--and assayed their abilities to intoxicate cells. The CPD mutants include an intact GTD but lack the cysteine protease activity. The mutants had reduced potency in that their effect on cells was delayed and required higher concentrations than wild-type TcdB. They did eventually cause cell rounding, glucosylation of Rho GTPases, and apoptosis that was indistinguishable from that caused by TcdB. Although the mutant toxins caused a complete cell rounding, they failed to release their GTD into cytosol, whereas wild-type TcdB displayed significant autocleavage and release of GTD. We conclude that the cysteine protease-mediated autocleavage and release of GTD is not a prerequisite for the cytotoxic activity of TcdB, but rather limits the potency and speed of Rho GTPase glucosylation. Our findings revise and refine the current model for the mode of the action and cellular trafficking of TcdB.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidad , Clostridioides difficile/metabolismo , Proteasas de Cisteína/metabolismo , Glucosiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Sustitución de Aminoácidos , Animales , Apoptosis , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Línea Celular , Clostridioides difficile/patogenicidad , Proteasas de Cisteína/genética , Análisis Mutacional de ADN , Células Epiteliales/efectos de los fármacos , Glucosiltransferasas/genética , Ratones , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/toxicidad
11.
PLoS One ; 8(3): e58634, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23484044

RESUMEN

Clostridium difficile toxin B (TcdB) intoxicates target cells by glucosylating Rho GTPases. TcdB (269 kDa) consists of at least 4 functional domains including a glucosyltransferase domain (GTD), a cysteine protease domain (CPD), a translocation domain (TD), and a receptor binding domain (RBD). The function and molecular mode of action of the TD, which is the largest segment of TcdB and comprises nearly 50% of the protein, remain largely unknown. Here we show that a 97-amino-acid segment (AA1756 - 1852, designated as ?97 or D97), located in the C-terminus of the TD and adjacent to the RBD, is essential for the cellular activity of TcdB. Deletion of this segment in TcdB (designated as TxB-D97), did not adversely alter toxin enzymatic activities or its cellular binding and uptake capacity. TxB-D97 bound to and entered cells in a manner similar to TcdB holotoxin. Both wild type and mutant toxins released their GTDs similarly in the presence of inositol hexakisphosphate (InsP6), and showed a similar glucosyltransferase activity in a cell-free glucosylating assay. Despite these similarities, the cytotoxic activity of TxB-D97 was reduced by more than 5 logs compared to wild type toxin, supported by the inability of TxB-D97 to glucosylate Rac1 of target cells. Moreover, the mutant toxin failed to elicit tumor necrosis factor alpha (TNF-α) in macrophages, a process dependent on the glucosyltransferase activity of the toxin. Cellular fractionation of toxin-exposed cells revealed that TxB-D97 was unable to efficiently release the GTD into cytosol. Thereby, we conclude the 97-amino-acid region of the TD C-terminus of TcdB adjacent to the RBD, is essential for the toxicity of TcdB.


Asunto(s)
Secuencia de Aminoácidos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidad , Animales , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Bioensayo , Fraccionamiento Celular , Proteasas de Cisteína/metabolismo , Cartilla de ADN/genética , Fluorescencia , Glucosiltransferasas/metabolismo , Inmunoprecipitación , Estimación de Kaplan-Meier , Ratones , Reacción en Cadena de la Polimerasa , Estructura Terciaria de Proteína/genética , Sales de Tetrazolio , Tiazoles , Células Vero
12.
Infect Immun ; 80(8): 2678-88, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22615245

RESUMEN

The global emergence of Clostridium difficile infection (CDI) has contributed to the recent surge in severe antibiotic-associated diarrhea and colonic inflammation. C. difficile produces two homologous glucosylating exotoxins, TcdA and TcdB, both of which are pathogenic and require neutralization to prevent disease occurrence. However, because of their large size and complex multifunctional domain structures, it has been a challenge to produce native recombinant toxins that may serve as vaccine candidates. Here, we describe a novel chimeric toxin vaccine that retains major neutralizing epitopes from both toxins and confers complete protection against primary and recurrent CDI in mice. Using a nonpathogenic Bacillus megaterium expression system, we generated glucosyltransferase-deficient holotoxins and demonstrated their loss of toxicity. The atoxic holotoxins induced potent antitoxin neutralizing antibodies showing little cross-immunogenicity or protection between TcdA and TcdB. To facilitate simultaneous protection against both toxins, we generated an active clostridial toxin chimera by switching the receptor binding domain of TcdB with that of TcdA. The toxin chimera was fully cytotoxic and showed potent proinflammatory activities. This toxicity was essentially abolished in a glucosyltransferase-deficient toxin chimera, cTxAB. Parenteral immunization of mice or hamsters with cTxAB induced rapid and potent neutralizing antibodies against both toxins. Complete and long-lasting disease protection was conferred by cTxAB vaccinations against both laboratory and hypervirulent C. difficile strains. Finally, prophylactic cTxAB vaccination prevented spore-induced disease relapse, which constitutes one of the most significant clinical issues in CDI. Thus, the rational design of recombinant chimeric toxins provides a novel approach for protecting individuals at high risk of developing CDI.


Asunto(s)
Toxinas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Clostridioides difficile/inmunología , Enterocolitis Seudomembranosa/prevención & control , Inmunotoxinas/inmunología , Animales , Anticuerpos Antibacterianos/biosíntesis , Anticuerpos Antibacterianos/sangre , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Neutralizantes/sangre , Proteínas Bacterianas/inmunología , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Cricetinae , Enterotoxinas/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Pruebas de Neutralización , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/inmunología
13.
Nat Med ; 17(9): 1136-41, 2011 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-21857653

RESUMEN

The global prevalence of severe Clostridium difficile infection highlights the profound clinical significance of clostridial glucosylating toxins. Virulence is dependent on the autoactivation of a toxin cysteine protease, which is promoted by the allosteric cofactor inositol hexakisphosphate (InsP(6)). Host mechanisms that protect against such exotoxins are poorly understood. It is increasingly appreciated that the pleiotropic functions attributed to nitric oxide (NO), including host immunity, are in large part mediated by S-nitrosylation of proteins. Here we show that C. difficile toxins are S-nitrosylated by the infected host and that S-nitrosylation attenuates virulence by inhibiting toxin self-cleavage and cell entry. Notably, InsP(6)- and inositol pyrophosphate (InsP(7))-induced conformational changes in the toxin enabled host S-nitrosothiols to transnitrosylate the toxin catalytic cysteine, which forms part of a structurally conserved nitrosylation motif. Moreover, treatment with exogenous InsP(6) enhanced the therapeutic actions of oral S-nitrosothiols in mouse models of C. difficile infection. Allostery in bacterial proteins has thus been successfully exploited in the evolutionary development of nitrosothiol-based innate immunity and may provide an avenue to new therapeutic approaches.


Asunto(s)
Toxinas Bacterianas/metabolismo , Clostridioides difficile/patogenicidad , Infecciones por Clostridium/tratamiento farmacológico , Enterotoxinas/metabolismo , Modelos Moleculares , Conformación Proteica , Animales , Toxinas Bacterianas/química , Células CACO-2 , Proteasas de Cisteína/metabolismo , Enterotoxinas/química , Humanos , Íleon/microbiología , Íleon/patología , Ratones , Óxido Nítrico/metabolismo , Ácido Fítico/metabolismo , S-Nitrosotioles/uso terapéutico , Estadísticas no Paramétricas , Virulencia
14.
Immunity ; 29(5): 720-33, 2008 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-18951048

RESUMEN

Granzyme A (GzmA) is considered a major proapoptotic protease. We have discovered that GzmA-induced cell death involves rapid membrane damage that depends on the synergy between micromolar concentrations of GzmA and sublytic perforin (PFN). Ironically, GzmA and GzmB, independent of their catalytic activity, both mediated this swift necrosis. Even without PFN, lower concentrations of human GzmA stimulated monocytic cells to secrete proinflammatory cytokines (interleukin-1beta [IL-1beta], TNFalpha, and IL-6) that were blocked by a caspase-1 inhibitor. Moreover, murine GzmA and GzmA(+) cytotoxic T lymphocytes (CTLs) induce IL-1beta from primary mouse macrophages, and GzmA(-/-) mice resist lipopolysaccharide-induced toxicity. Thus, the granule secretory pathway plays an unexpected role in inflammation, with GzmA acting as an endogenous modulator.


Asunto(s)
Granzimas/inmunología , Interleucina-1beta/inmunología , Interleucina-6/inmunología , Leucocitos Mononucleares/inmunología , Perforina/inmunología , Linfocitos T Citotóxicos/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Adenoviridae/inmunología , Animales , Adhesión Celular , Muerte Celular , Línea Celular Tumoral , Citotoxicidad Inmunológica , Técnicas de Silenciamiento del Gen , Granzimas/metabolismo , Células HeLa , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Células Jurkat , Macrófagos/inmunología , Ratones , Perforina/metabolismo , Linfocitos T Citotóxicos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Células U937
15.
EMBO Rep ; 7(4): 431-7, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16440001

RESUMEN

Granzyme A (GzmA) induces caspase-independent cell death with morphological features of apoptosis. Here, we show that GzmA at nanomolar concentrations cleaves Ku70, a key double-strand break repair (DSBR) protein, in target cells. Ku70 is cut after Arg(301), disrupting Ku complex binding to DNA. Cleaving Ku70 facilitates GzmA-mediated cell death, as silencing Ku70 by RNA interference increases DNA damage and cell death by GzmB cluster-deficient cytotoxic T lymphocytes or by GzmA and perforin, whereas Ku70 overexpression has the opposite effect. Ku70 has two known antiapoptotic effects-facilitating DSBR and sequestering bax to prevent its translocation to mitochondria. However, GzmA triggers single-stranded, not double-stranded, DNA damage, and GzmA-induced cell death does not involve bax. Therefore, Ku70 has other antiapoptotic functions in GzmA-induced cell death, which are blocked when GzmA proteolyses Ku70.


Asunto(s)
Antígenos Nucleares/metabolismo , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Antígenos Nucleares/genética , Arginina/genética , Arginina/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , ADN/genética , Daño del ADN/efectos de los fármacos , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Granzimas , Humanos , Autoantígeno Ku , Glicoproteínas de Membrana/farmacología , Ratones , Perforina , Proteínas Citotóxicas Formadoras de Poros , Inhibidores de Proteasas/farmacología , Unión Proteica , Serina Endopeptidasas/farmacología , Linfocitos T Citotóxicos/metabolismo
16.
Immunity ; 23(3): 249-62, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16169498

RESUMEN

Perforin delivers granzymes to induce target-cell apoptosis. At high concentrations, perforin multimerizes in the plasma membrane to form pores. However, whether granzymes enter target cells via membrane pores is uncertain. Here we find that perforin at physiologically relevant concentrations and during cell-mediated lysis creates pores in the target-cell membrane, transiently allowing Ca(2+) and small dyes into the cell. The Ca(2+) flux triggers a wounded membrane-repair response in which internal vesicles, including lysosomes and endosomes, donate their membranes to reseal the damaged membrane. Perforin also triggers the rapid endocytosis of granzymes into large EEA-1-staining vesicles. The restoration of target-cell membrane integrity by triggering the repair response is necessary for target cells subjected to cytotoxic T lymphocyte attack to avoid necrosis and undergo the slower process of programmed cell death. Thus, the target cell actively participates in determining its own fate during cell-mediated death.


Asunto(s)
Apoptosis/inmunología , Membrana Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Linfocitos T Citotóxicos/inmunología , Calcio/metabolismo , Membrana Celular/inmunología , Endocitosis/fisiología , Granzimas , Humanos , Lisosomas/inmunología , Lisosomas/metabolismo , Glicoproteínas de Membrana/inmunología , Microscopía Confocal , Perforina , Proteínas Citotóxicas Formadoras de Poros , Serina Endopeptidasas/metabolismo , Células U937
17.
J Immunol ; 174(9): 5456-61, 2005 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15843543

RESUMEN

Perforin (PFN) delivery of granzymes (Gzm) into the target cell at the immunological synapse is the major pathway for inducing apoptosis of virus-infected cells and tumors. A validated model for how PFN delivers Gzm into the cytosol is still lacking. PFN was originally thought to work by forming pores in the target cell plasma membrane that allow Gzm entry. This model was questioned when it was shown that GzmB is endocytosed without PFN. Moreover, apoptosis could be triggered by adding PFN to washed cells that have previously endocytosed GzmB. In this study, we show that GzmB binds to the plasma membrane mostly via nonspecific charge interactions. Washing in saline does not remove bound Gzm. However, if externally bound GzmB is completely removed, subsequent addition of PFN does not release previously endocytosed GzmB and does not trigger apoptosis. Therefore, PFN must be coendocytosed with GzmB to deliver it into the cytosol.


Asunto(s)
Apoptosis/inmunología , Pruebas Inmunológicas de Citotoxicidad/métodos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Animales , Línea Celular Tumoral , Membrana Celular/enzimología , Membrana Celular/inmunología , Membrana Celular/metabolismo , Sinergismo Farmacológico , Endocitosis/inmunología , Granzimas , Células HeLa , Humanos , Iones/metabolismo , Punto Isoeléctrico , Células K562 , Perforina , Proteínas Citotóxicas Formadoras de Poros , Unión Proteica/inmunología , Transporte de Proteínas/inmunología , Ratas , Tripsina/metabolismo , Células U937
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA