Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gene ; 718: 143989, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31326551

RESUMEN

Our comparative studies seek to understand the structure and function of ion channels in cartilaginous fish that can detect very low voltage gradients in seawater. The principal channels of the electroreceptor include a calcium activated K channel whose α subunit is Kcnma1, and a voltage-dependent calcium channel, Cacna1d. It has also been suggested based on physiological and pharmacological evidence that a voltage-gated K channel is present in the basal membranes of the receptor cells which modulates synaptic transmitter release. Large conductance calcium-activated K channels (BK) are comprised of four α subunits, encoded by Kcnma1 and modulatory ß subunits of the Kcnmb class. We recently cloned and published the skate Kcnma1 gene and most of Kcnmb4 using purified mRNA of homogenized electroreceptors. Bellono et al. have recently performed RNA sequencing (RNA-seq) on purified mRNA from skate electroreceptors and found several ion channels including Kcnma1. We searched the Bellono et al. RNA-seq repository for additional channels and subunits. Our most significant findings are the presence of two Shaker type voltage dependent K channel sequences which are grouped together as isoforms in the data repository. The larger of these is a skate ortholog of the voltage dependent fast potassium channel Kv1.1, which is expressed at appreciable levels. The second ortholog is similar to Kv1.5 but has fewer N-terminal amino acids than other species. The sequence for Kv1.5 in the skate is very strongly aligned with the recently reported sequence for potassium channels in the electroreceptors of the cat shark, S. retifer, which also modulate synaptic transmission. The latter channel was designated as Kv1.3 in the initial report, but we suggest that these channels are actually orthologs of each other, and that Kv1.5 is the prevailing designation. We also found a beta subunit sequence (Kcnab2) which may co-assemble with one or both of the voltage gated channels. The new channels and subunits were verified by RT-PCR and the Kv1.1 sequence was confirmed by cloning. We also searched the RNA-seq repository for accessory subunits of Kcnma1, and found a computer-generated assembly that contained a complete sequence of its ß subunit, Kcnmb2. Skate Kcnmb2 has a total of 279 amino acids, with 51 novel amino acids at the N-terminus which may play a specific physiological role. This sequence was confirmed by PCR and cloning. However, skate Kcnmb2 is expressed at low levels in the electroreceptor compared to Kcnma1 and skate Kcnmb1 is absent. The evolutionary origin of the newly described K channels and their subunits was studied by alignments with mammalian sequences, including human, and also those in related fish: the whale shark (R. typus), the ghost shark (C.milii), and (S. retifer). There are also orthologous K channels of the lamprey, which has electroreceptors. Tree building and bootstrap programs were used to confirm phylogenetic inferences. Further research should focus on the subcellular locations of these channels, their gating behavior, and the effects of accessory subunits on gating.


Asunto(s)
Clonación Molecular , Proteínas de Peces/genética , Canal de Potasio Kv.1.1/genética , Canal de Potasio Kv1.5/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Filogenia , Rajidae/genética , Animales , Proteínas de Peces/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Canal de Potasio Kv.1.1/metabolismo , Canal de Potasio Kv1.5/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Rajidae/metabolismo , Especificidad de la Especie
2.
Gene ; 578(1): 63-73, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26687710

RESUMEN

Elasmobranchs detect small potentials using excitable cells of the ampulla of Lorenzini which have calcium-activated K(+) channels, first described in 1974. A distinctive feature of the outward current in voltage clamped ampullae is its apparent insensitivity to voltage. The sequence of a BK channel α isoform expressed in the ampulla of the skate was characterized. A signal peptide is present at the beginning of the gene. When compared to human isoform 1 (the canonical sequence), the largest difference was absence of a 59 amino acid region from the S8-S9 intra-cellular linker that contains the strex regulatory domain. The ampulla isoform was also compared with the isoform predicted in late skate embryos where strex was also absent. The BK voltage sensors were conserved in both skate isoforms. Differences between the skate and human BK channel included alternative splicing. Alternative splicing occurs at seven previously defined sites that are characteristic for BK channels in general and hair cells in particular. Skate BK sequences were highly similar to the Australian ghost shark and several other vertebrate species. Based on alignment of known BK sequences with the skate genome and transcriptome, there are at least two isoforms of Kcnma1α expressed in the skate. One of the ß subunits (ß4), which is known to decrease voltage sensitivity, was also identified in the skate genome and transcriptome and in the ampulla. These studies advance our knowledge of BK channels and suggest further studies in the ampulla and other excitable tissues.


Asunto(s)
Empalme Alternativo , Clonación Molecular/métodos , Células Ciliadas Ampollares/enzimología , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Rajidae/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Humanos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Señales de Clasificación de Proteína , Rajidae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...