Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 52(9): 2631-2640, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36744545

RESUMEN

Diabetics often prick their fingertips to measure the glucose levels in their blood. However, this traditional method not only causes prolonged pain but also increases the risk of infection. Hence, in this study, a non-invasive flexible glucose biosensor with high sensitivity was fabricated. Specifically, NiCo metal-organic frameworks (NiCo-MOFs) served as the electrode material of a micro-supercapacitor and sensing material of a glucose sensor. The electrochemical tests verified that the prominent sensitivity of the NiCo bimetal product is 1422.2 µA mM-1 cm-2. The micro-supercapacitor based on the as-fabricated NiCo-MOFs showed a high energy density of 11.5 mW h cm-2 at the power density 0.26 mW cm-2. In addition, the as-designed glucose device exhibited an excellent sensitivity of 0.31 µA µM-1. Furthermore, a flexible energy storage and glucose detection system was successfully prepared by further integrating the micro-supercapacitor and glucose sensor. The smart detector could accurately and conveniently measure the glucose concentration in sweat in real-time. Therefore, the wearable real-time sensing device displays feasible application for non-invasive glucose monitoring and health management.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Dispositivos Electrónicos Vestibles , Glucosa , Glucemia , Automonitorización de la Glucosa Sanguínea , Técnicas Biosensibles/métodos
2.
ACS Appl Mater Interfaces ; 14(33): 37843-37852, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35947783

RESUMEN

The precise measurement of glucose level is significant for the health management of the human body. However, the existing sensitive materials and detection methods for glucose are less satisfying for practical applications. Herein, an ultrathin reticular two-dimensional nanosheets array composed of trimesic acid (H3BTC)-based bimetal metal-organic frameworks (MOFs) and carbon cloth (CC), which is constructed through a morphology control strategy, is reported for glucose sensing. Meanwhile, this nonmoving sweat glucose sensor based on a NiCo-BTC/CC electrode has been successfully prepared by a screen printing method. Benefiting from the regular and ultrathin nanosheets array, the NiCo-BTC/CC electrode has an excellent sensitivity of 2701.29 µA mM-1 cm-2, which is about 2.4 times that of its unregulated counterpart (1127.85 µA mM-1 cm-2) in the linear range 5-205 µM. In addition, an ultralow detection limit (0.09 µM, S/N = 3) and good selectivity of NiCo-BTC/CC were also obtained. The high sensitivity of the glucose sensor based on NiCo-BTC/CC electrode is 0.174 µA µM-1 (50-1000 µM). Remarkably, the preciously designed sensor is used to detect glucose concentration in sweat with a noninvasive mode, and the results are basically consistent with those of a commercial glucose device with an invasive mode. This research exhibits potential methodology for the morphology design of bimetallic MOFs nanosheets to achieve a high accuracy rate and noninvasive and timeless measurement of a glucose sensor.


Asunto(s)
Glucosa , Estructuras Metalorgánicas , Carbono , Electrodos , Humanos
3.
Autism Res ; 15(6): 996-1007, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35403356

RESUMEN

Autism spectrum disorder (ASD) is associated with altered gut microbiota. However, there has been little consensus on the altered bacterial species and studies have had small sample sizes. We aimed to identify the taxonomic composition and evaluate the changes in the fecal microbiota in Chinese children with ASD by using a relatively large sample size. We conducted a case-control study of 101 children with ASD and 103 healthy controls in China. Demographic information and fecal samples were collected, and the V3-V4 hypervariable regions of the bacterial 16S ribosomal RNA (rRNA) gene were sequenced. The alpha and beta diversities between the two groups were significantly different. After correcting for multiple comparisons, at the phylum level the relative abundances of Actinobacteria and Proteobacteria in the case group were significantly higher than those in the control group. The relative abundance of the Escherichia-Shigella genus in the case group was significantly higher than that of the control group, and the relative abundance of Blautia and unclassified_f__Lachnospiraceae in the control group were higher than that of the case group. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States analysis showed that children with ASD may have disturbed functional pathways, such as amino acid metabolism, cofactor and vitamin metabolism, and the AMP-activated protein kinase signaling pathway. This study revealed the characteristics of the intestinal flora of Chinese children with ASD and provided further evidence of gut microbial dysbiosis in ASD. LAY SUMMARY: This study characterized the gut microbiota composition of 101 children with ASD and 103 healthy controls in China. The altered gut microbiota may contribute significantly to the risk of ASD, including significant increases in the relative abundances of Actinobacteria, Proteobacteria and Escherichia-Shigella and significant decrease of Blautia and unclassified_f__Lachnospiraceae. This study provided further evidence of gut microbial dysbiosis in ASD.


Asunto(s)
Trastorno del Espectro Autista , Microbiota , Trastorno del Espectro Autista/complicaciones , Bacterias/genética , Estudios de Casos y Controles , Niño , Disbiosis/complicaciones , Heces/microbiología , Humanos , Filogenia
4.
ACS Appl Mater Interfaces ; 12(42): 47416-47424, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32972139

RESUMEN

Scalable and cost-effective fabrication of three-dimensional (3D) boron carbon nitride (BCN) microspheres was first demonstrated by hydrothermal and annealing methods. In particular, the specific surface area of 3D-BCN-4 reached 1390.12 m2 g-1 and had a high hierarchical pore structure. An all-printed solid-state flexible microsupercapacitor (MSC) based on 3D-BCN-4 microspheres as an electrode material was fabricated for the first time by a screen printing method, which also provided efficacious properties. The single MSC areal capacitance reached 41.6 mF cm-2. Furthermore, the remarkable mechanical flexibility was also achieved for the device with evidence that no obvious capacitance loss occurred even upon bending to 180°, and the device had a 93.3% capacitance retention after 1000 cycles. In addition, the maximum energy density reached 0.00832 mW h cm-2, and the highest power density was 2 mW cm-2. These results show the synthesis of 3D-BCN by a facile and effective method with excellent electrochemical performance, which should provide a promising direction to wearable energy storage devices.

5.
Nanoscale Res Lett ; 15(1): 36, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32030580

RESUMEN

Construct dielectric films with high energy density and efficiency are the key factor to fabricate high-performance dielectric film capacitors. In this paper, an all organic composite film was constructed based on high dielectric polymer and linear dielectric polymer. After the optimized polycondensation reaction of a linear dielectric polymer aromatic polythiourea (ArPTU), the proper molecular weight ArPTU was obtained, which was introduced into poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (PVDF-TrFE-CFE) terpolymer for a composite dielectrics. The results indicate that the addition of ArPTU molecules reduces the dielectric loss and improves the breakdown field strength of the PVDF-TrFE-CFE effectively. For the PVDF-TrFE-CFE/ArPTU (90/10) composite film, the maximum energy density about 22.06 J/cm3 at 407.57 MV/m was achieved, and high discharge efficiency about 72% was presented. This composite material can be casted on flexible substrate easily, and PVDF-TrFE-CFE/ArPTU organic composite films having high energy density, high breakdown field strength, low dielectric loss, and higher discharge efficiency are obtained. This is an unreported exploration about high energy density organic dielectric films based on PVDF-TrFE-CFE matrix and linear polymer dielectrics, and the findings of this research can provide a simple and scalable method for producing flexible high energy density materials for energy storage devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...