Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 279(Pt 3): 135326, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236963

RESUMEN

Glioma poses a serious threat to human health and has a high mortality rate. Therefore, developing natural anti-tumour drugs for cancer treatment is an urgent priority. Schizophyllum commune is an edible and medicinal fungus, with polysaccharides as its main active components, which may have anti-tumour properties. Herein, we characterised S. commune fruiting body polysaccharides (SCFP) structure and evaluated its anti-glioma activity in vitro and in vivo. UV and FTIR spectra, high-performance gel chromatography, and monosaccharide composition analyses demonstrated that SCFP was a heteropolysaccharide with a molecular weight of 290.92 kDa. Among the monosaccharide compositions, mannose, galactose, and glucose were the most abundant. SCFP significantly inhibited the survival of the glioma cell lines U251 and U-87MG. U251 xenograft tumours treated with SCFP via gavage showed a 47.39 % inhibition, with no significant toxic side effects observed. SCFP upregulated aplasia Ras homologue member I (ARHI) expression, thereby regulating PI3K/AKT signalling, inhibiting tumour migration, and inducing apoptosis, to inhibit tumour growth. Furthermore, SCFP treatment increased the relative abundance of beneficial bacteria, including Akkermansia muciniphila, Ligilactobacillus murinus, and Parabacteroides goldsteinii, in tumour-bearing mice and restored the gut microbiota structure to that of the normal group (NG group) mice without tumours. Thus, SCFP has the potential for application as a natural anticancer drug.

2.
Chem Biol Interact ; 400: 111178, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39084503

RESUMEN

Glioma is a serious primary malignant tumor of the human central nervous system with a poor prognosis and a high recurrence rate; however, inhibition of immune checkpoints can greatly improve the survival rate of patients. The purpose of this study was to investigate the regulation of PD-L1 by cordycepin and the mechanism of its anti-tumor action. The results of previous studies indicate that cordycepin has good anti-proliferative and anti-migratory activities and can induce apoptosis in U251 and T98G cells in vitro. Here, transcriptome sequencing showed that cordycepin may exert anti-tumor effects through the NOD-like receptor signaling pathway. Further intervention with BMS-1, a small molecule inhibitor of PD-L1, was used to explore whether inhibition of PD-L1 affected the regulation of the NOD-like receptor signaling pathway by cordycepin. Mechanistically, on the one hand, cordycepin regulated the expression of NFKB1 and STAT1 through the NOD-like receptor signaling pathway, thereby inhibiting the expression of PD-L1. In addition, inhibition of PD-L1 enhanced the regulation by cordycepin of the NOD-like receptor signaling pathway. On the other hand, cordycepin directly upregulated expression of STAT1 and downregulated that of PD-L1. In vivo studies further showed that cordycepin could downregulate expression of PD-L1 and NFKB1 and upregulate that of STAT1 in glioma xenograft tumor tissues, consistent with the results of in vitro studies. The results suggest that cordycepin may down-regulate the expression of PD-L1 through NOD-like receptor signaling pathway and NFKB signaling pathway, thereby inhibiting the immune escape of glioma, and can be developed as a PD-L1 inhibitor. Our results therefore provide a theoretical foundation for the use of cordycepin in treatment of glioma and enrich our understanding of its pharmacological mechanism.


Asunto(s)
Antígeno B7-H1 , Desoxiadenosinas , Glioma , Subunidad p50 de NF-kappa B , Factor de Transcripción STAT1 , Transducción de Señal , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antígeno B7-H1/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Desoxiadenosinas/farmacología , Regulación hacia Abajo , Glioma/tratamiento farmacológico , Glioma/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Subunidad p50 de NF-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Transcripción STAT1/metabolismo
3.
Medicine (Baltimore) ; 102(43): e35684, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37904447

RESUMEN

At present, detailed demographic and clinical data of moyamoya disease (MMD) in the population of Southeast China are lacking. Therefore, this study aimed to evaluate the epidemiological and clinical features of MMD in Southeast China. Our cohort included 170 patients diagnosed with MMD over the preceding 5 years. Clinical characteristics were obtained through a retrospective chart review, while follow-up information and outcomes were obtained through clinical visits and imaging. The median age at symptom onset was 49 years (range 4-73), with a peak in the age distribution observed at 41 to 60 years. The female-to-male ratio was 1.125 (90/80), and the ratio of the ischemic type to the hemorrhagic type was 2.33 (119/50). The most common initial symptom was an ischemic event. The 5-year Kaplan-Meier risk of stroke was 4.9% for all patients treated with surgical revascularization. Of all patients, 83.9% were able to live independently with no significant disability, and 89.8% showed improved cerebral hemodynamics. Our study provided detailed demographic and clinical data on Southeastern Chinese patients with MMD, which was consistent with findings in other parts of China. Raising clinical awareness of MMD in primary hospitals is important to facilitate early diagnosis and timely treatment of MMD patients.


Asunto(s)
Revascularización Cerebral , Enfermedad de Moyamoya , Humanos , Masculino , Femenino , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Enfermedad de Moyamoya/diagnóstico , Enfermedad de Moyamoya/epidemiología , Enfermedad de Moyamoya/cirugía , Resultado del Tratamiento , China/epidemiología , Revascularización Cerebral/métodos
4.
J Cancer Res Clin Oncol ; 149(17): 16055-16067, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37695389

RESUMEN

PURPOSE: Glioblastoma is one of the malignant tumors with poor prognosis and no effective treatment is available at present. METHODS: To study the effect of cordycepin combined with temozolomide on glioblastoma, we explored the effect of the combination based on network pharmacology and biological verification. RESULTS: It was found that the drug combination significantly inhibited the cell growth, proliferation, migration and invasion of LN-229 cells. Drug combination inhibited epithelial-mesenchymal transition (EMT) by up-regulating the expression of E-cadherin and suppressing the expression of N-cadherin, Zeb1 and Twist1. Through network pharmacology, we further explored the molecular mechanism of drug combination against glioblastoma, and 36 drug-disease common targets were screened. The GO biological process analysis included 44 items (P < 0.01), which mainly involved the regulation of apoptosis, cell proliferation, cell migration, etc. The enrichment analysis of KEGG pathways included 28 pathways (P < 0.05), and the first four pathways were "MicroRNA in cancer, Proteoglycans in cancer, Pathways in cancer and PI3K-AKT signaling pathway". We detected the expression of important genes in the pathways and PPI network, and the results showed that the drug combination down-regulated NFKB1, MYC, MMP-9, MCL1, CTNNB1, and up-regulated PDCD4. CONCLUSION: Cordycepin combined with temozolomide may down-regulate MYC through "MicroRNA in cancer, Proteoglycans in cancer, Pathways in cancer and PI3K-AKT signaling pathway", which in turn regulate the expression of MCL1, CTNNB1, MMP9, PDCD4, thus regulating cell proliferation, migration and apoptosis in glioblastoma.


Asunto(s)
Glioblastoma , MicroARNs , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/uso terapéutico , Línea Celular Tumoral , MicroARNs/genética , Proliferación Celular , Combinación de Medicamentos , Proteoglicanos/metabolismo , Proteoglicanos/farmacología , Proteoglicanos/uso terapéutico , Proteínas de Unión al ARN , Proteínas Reguladoras de la Apoptosis/metabolismo
5.
Neurochirurgie ; 69(5): 101478, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37598621

RESUMEN

OBJECTIVE: Pituitary abscess is an often misdiagnosed, rare clinical disorder. To improve diagnostic accuracy and the efficacy of surgical and antibiotic therapy for patients with pituitary abscess, herein, we retrospectively reviewed 15 patients who presented with pituitary abscesses from 2005 to 2022. DESIGN: Retrospective study. PATIENTS: Fifteen patients underwent transsphenoidal surgery and received antibiotic treatment. MEASUREMENTS: Complete details regarding medical history, clinical manifestations, laboratory examinations, imaging studies, and treatment strategies were obtained for all patients. RESULTS: Most patients presented with hypopituitarism and headaches, while some presented with fever, visual disturbances, and diabetes insipidus (DI). Abscesses showed significant annular enhancement post gadolinium injection. In most patients, pituitary abscess can be cured via microscopic or endoscopic drainage of the abscess followed by antibiotic treatment. Complete cure of pituitary abscess was observed in nine patients, with six cases of prolonged hypopituitarism and only one case of recurrence. Long-term hormone replacement therapy was effective in the postoperative management of hypopituitarism. CONCLUSIONS: The typical manifestations of pituitary abscess include hypopituitarism and headaches; the presence of an enhanced ring at the edge of the mass on contrast-enhanced magnetic resonance images (MRI) is highly suggestive of pituitary abscess. We recommend antibiotic treatment for 4-6 weeks postoperatively, based on the results of bacterial cultures or metagenomic next-generation sequencing (mNGS).

6.
Chin J Integr Med ; 29(10): 885-894, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37357242

RESUMEN

OBJECTIVE: To explore the effect and mechanism of schisandrin B (Sch B) in the treatment of cerebral ischemia in rats. METHODS: The cerebral ischemia models were induced by middle cerebral artery occlusion (MCAO) and reperfusion. Sprague-Dawley rats were divided into 6 groups using a random number table, including sham, MCAO, MCAO+Sch B (50 mg/kg), MCAO+Sch B (100 mg/kg), MCAO+Sch B (100 mg/kg)+LY294002, and MCAO+Sch B (100 mg/kg)+wortmannin groups. The effects of Sch B on pathological indicators, including neurological deficit scores, cerebral infarct volume, and brain edema, were subsequently studied. Tissue apoptosis was identified by terminal transferase-mediated dUTP nick end-labeling (TUNEL) staining. The protein expressions involved in apoptosis, inflammation response and oxidative stress were examined by immunofluorescent staining, biochemical analysis and Western blot analysis, respectively. The effect of Sch B on phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling was also explored. RESULTS: Sch B treatment decreased neurological deficit scores, cerebral water content, and infarct volume in MCAO rats (P<0.05 or P<0.01). Neuronal nuclei and TUNEL staining indicated that Sch B also reduced apoptosis in brain tissues, as well as the Bax/Bcl-2 ratio and caspase-3 expression (P<0.01). Sch B regulated the production of myeloperoxidase, malondialdehyde, nitric oxide and superoxide dismutase, as well as the release of cytokine interleukin (IL)-1 ß and IL-18, in MCAO rats (P<0.05 or P<0.01). Sch B promoted the phosphorylation of PI3K and AKT. Blocking the PI3K/AKT signaling pathway with LY294002 or wortmannin reduced the protective effect of Sch B against cerebral ischemia (P<0.05 or P<0.01). CONCLUSIONS: Sch B reduced apoptosis, inflammatory response, and oxidative stress of MCAO rats by modulating the PI3K/AKT pathway. Sch B had a potential for treating cerebral ischemia.

7.
Neuropharmacology ; 237: 109603, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37236529

RESUMEN

Liraglutide has been recently discovered to penetrate the blood-brain barrier to exert neuroprotective effects. However, relevant mechanisms of the protective effects of liraglutide on ischaemic stroke remain to be elucidated. This study examined the mechanism of GLP-1R in regulating the protective effect of liraglutide against ischaemic stroke. Middle cerebral artery occlusion (MCAO) male Sprague-Dawley rat model with/without GLP-1R or Nrf2 knockdown was established and subjected to liraglutide treatment. Then neurological deficit and brain oedema of rats was evaluated and brain tissues were subjected to TTC, Nissl, TUNEL and immunofluorescence staining. Rat primary microglial cells firstly underwent lipopolysaccharide (LPS) treatment, then GLP-1R or Nrf2 knockdown treatment, and finally Liraglutide treatment to research the NLRP3 activation. As a result, Liraglutide protected rats' brain tissues after MCAO, which attenuated brain oedema, infarct volume, neurological deficit score, neuronal apoptosis and Iba1 expression but enhanced live neurons. However, GLP-1R knockdown abrogated these protective effects of liraglutide on MCAO rats. According to in vitro experiments, Liraglutide promoted M2 polarisation, activated Nrf2 and inhibited NLRP3 activation in LPS-induced microglial cells, but GLP-1R or Nrf2 knockdown reversed these effects of Liraglutide on LPS-induced microglial cells. Further, Nrf2 knockdown counteracted the protection of liraglutide on MCAO rats, whereas sulforaphane (agonist of Nrf2) counteracted the effect of Nrf2 knockdown on liraglutide-treated MCAO rats. Collectively, GLP-1R knockdown abrogated the protection of liraglutide on MCAO rats by activating NLRP3 via inactivating Nrf2.


Asunto(s)
Edema Encefálico , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Masculino , Ratas , Animales , Liraglutida/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Edema Encefálico/tratamiento farmacológico , Lipopolisacáridos/farmacología , Ratas Sprague-Dawley , Accidente Cerebrovascular/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo
8.
Neurosurg Rev ; 46(1): 64, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36877325

RESUMEN

To explore the utility of transcranial Doppler (TCD) findings when assessing bypass patency in patients with Moyamoya disease (MMD). Computed tomography angiography (CTA) and TCD sonography (TCDS) were performed before and after surgery to evaluate bypass patency. The peak systolic flow velocity (PSV) of the superficial temporal artery (STA) and the pulsatility index (PI) were compared between the groups that achieved patency and not, and receiver operating characteristic (ROC) curve analyses were used to define the TCDS criteria revealing patency. This study included 35 hemispheres (15 women; mean age 47 years) with Moyamoya disease who underwent STA-middle carotid artery bypass in our institution between January 2022 and October 2022. The PSV first increased on postoperative days 4-5 and then decreased on postoperative days 6-7 and 7-8. Patients with transient neurological diseases (TNDs), compared to those without, evidenced a significantly lower PSV value (P < 0.05). Compared with the non-patency group, the PSV was higher (P < 0.001) in the patency group. The cutoff values reflecting patency with good sensitivity and specificity were PSV > 49.00; PSV ratio (postoperative/preoperative) > 1.218; PSV ratio (operation side/contralateral side) > 1.082; and PSV ratio (adjusted) > 1.202. In the patency group, the PSV and PI significantly increased (P < 0.001) and decreased (P < 0.001) respectively. Bypass patency can be noninvasively and accurately evaluated via TCDS, affording an objective basis for assessment of the effect of revascularization surgery on patients with MMD.


Asunto(s)
Angiografía por Tomografía Computarizada , Enfermedad de Moyamoya , Humanos , Femenino , Persona de Mediana Edad , Enfermedad de Moyamoya/diagnóstico por imagen , Enfermedad de Moyamoya/cirugía , Ultrasonografía Doppler Transcraneal , Angiografía
9.
Chin J Integr Med ; 28(7): 594-602, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35015222

RESUMEN

OBJECTIVE: To determine whether Schisandrin B (Sch B) attenuates early brain injury (EBI) in rats with subarachnoid hemorrhage (SAH). METHODS: Sprague-Dawley rats were divided into sham (sham operation), SAH, SAH+vehicle, and SAH+Sch B groups using a random number table. Rats underwent SAH by endovascular perforation and received Sch B (100 mg/kg) or normal saline after 2 and 12 h of SAH. SAH grading, neurological scores, brain water content, Evan's blue extravasation, and terminal transferase-mediated dUTP nick end-labeling (TUNEL) staining were carried out 24 h after SAH. Immunofluorescent staining was performed to detect the expressions of ionized calcium binding adapter molecule 1 (Iba-1) and myeloperoxidase (MPO) in the rat brain, while the expressions of B-cell lymphoma 2 (Bcl-2), Bax, Caspase-3, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), apoptosis-associated specklike protein containing the caspase-1 activator domain (ASC), Caspase-1, interleukin (IL)-1ß, and IL-18 in the rat brains were detected by Western blot. RESULTS: Compared with the SAH group, Sch B significantly improved the neurological function, reduced brain water content, Evan's blue content, and apoptotic cells number in the brain of rats (P<0.05 or P<0.01). Moreover, Sch B decreased SAH-induced expressions of Iba-1 and MPO (P<0.01). SAH caused the elevated expressions of Bax, Caspase-3, NLRP3, ASC, Caspase-1, IL-1ß, and IL-18 in the rat brain (P<0.01), all of which were inhibited by Sch B (P<0.01). In addition, Sch B increased the Bcl-2 expression (P<0.01). CONCLUSION: Sch B attenuated SAH-induced EBI, which might be associated with the inhibition of neuroinflammation, neuronal apoptosis, and the NLRP3 inflammatory signaling pathway.


Asunto(s)
Lesiones Encefálicas , Hemorragia Subaracnoidea , Animales , Apoptosis , Encéfalo/patología , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/patología , Caspasa 3/metabolismo , Ciclooctanos , Azul de Evans , Inflamasomas/metabolismo , Interleucina-18/metabolismo , Lignanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Compuestos Policíclicos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Sprague-Dawley , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/tratamiento farmacológico , Agua , Proteína X Asociada a bcl-2/metabolismo
10.
FASEB J ; 36(1): e22075, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34919285

RESUMEN

Long non-coding RNAs (lncRNAs) regulate neurological damage in cerebral ischemia-reperfusion injury (CIRI). This study aimed to investigate the biological roles of lncRNA CEBPA-AS1 in CIRI. Middle cerebral artery occlusion and ischemia-reperfusion injury (MCAO/IR) rat model and oxygen-glucose deprivation and reoxygenation (OGD/R) cell lines were generated; the expression of CEBPA-AS1 was evaluated by qRT-PCR. The effects of CEBPA-AS1 on cell apoptosis and nerve damage were examined. The downstream microRNA (miRNA) and mRNA of CEBPA-AS1 were predicted and verified. We found that overexpression of CEBPA-AS1 could attenuate MCAO/IR-induced nerve damage and neuronal apoptosis in the rat model. Knockdown of CEBPA-AS1 aggravated cell apoptosis and enhanced the production of LDH and MDA in the OGD/R cells. Upon examining the molecular mechanisms, we found that CEBPA-AS1 stimulated APPL1 expression by combining with miR-340-5p, thereby regulating the APPL1/LKB1/AMPK pathway. In the rescue experiments, CEBPA-AS1 overexpression was found to attenuate OGD/R-induced cell apoptosis and MCAO/IR induced nerve damage, while miR-340-5p reversed these effects of CEBPA-AS1. In conclusion, CEBPA-AS1 could decrease CIRI by sponging miR-340-5, regulating the APPL1/LKB1/AMPK pathway.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP/biosíntesis , Proteínas Quinasas Activadas por AMP/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Trastornos Cerebrovasculares/metabolismo , MicroARNs/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , ARN Largo no Codificante/biosíntesis , Daño por Reperfusión/metabolismo , Transducción de Señal , Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Proteínas Quinasas Activadas por AMP/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apoptosis , Trastornos Cerebrovasculares/genética , Trastornos Cerebrovasculares/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , MicroARNs/genética , Proteínas del Tejido Nervioso/genética , ARN Largo no Codificante/genética , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/genética , Daño por Reperfusión/patología
11.
Inflammation ; 44(1): 397-406, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32951103

RESUMEN

Liraglutide, one of the glucagon-like peptide 1 receptor (GLP-1R) agonists, has been demonstrated to protect brain damage produced by ischemic stroke. However, it remains unknown whether liraglutide attenuates early brain injury after subarachnoid hemorrhage. The present study was performed to explore the effect of liraglutide on early brain injury after subarachnoid hemorrhage in rats, and further investigate the potential mechanisms. Sprague-Dawley rats underwent subarachnoid hemorrhage (SAH) by endovascular perforation, then received subcutaneous injection with liraglutide (50 or 100 µg/kg) or vehicle after 2 and 12 h of SAH. SAH grading, neurological scores, brain water content, and Evans Blue extravasation were measured 24 h after SAH. Immunofluorescent staining was performed to detect the extent of microglial activation in rat brain 24 h after SAH. TUNEL staining was performed to evaluate neuronal apoptosis in rat brain of SAH. Expression of GLP-1R, cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), Bcl-2, Bax, and cleaved caspase-3 in rat brain were determined by western blot. Expression of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) in rat brain was assessed by ELISA. Neurological dysfunction, brain water content, Evans Blue extravasation, microglial activation, and neuronal apoptosis were significantly reduced by GLP-1R agonist liraglutide. Expression of GLP-1R in rat brain was decreased after SAH, which is significantly elevated by liraglutide. Expression of inflammatory mediates like COX-2, iNOS, TNF-α, and IL-1ß was increased after SAH, which were significantly inhibited by liraglutide. Furthermore, SAH caused the elevated expression of pro-apoptotic factors Bax and cleaved caspase-3 in rat brain, both of which were inhibited by liraglutide. In addition, liraglutide reversed the expression of anti-apoptotic protein Bcl-2. Our results demonstrated that liraglutide reduces early brain injury and attenuates inflammatory reaction and neuronal apoptosis in rats of SAH. Liraglutide provides neuroprotection against SAH, which might be associated with the inhibition of inflammation and apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Lesiones Encefálicas/tratamiento farmacológico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Liraglutida/uso terapéutico , Neuronas/efectos de los fármacos , Hemorragia Subaracnoidea/tratamiento farmacológico , Animales , Apoptosis/fisiología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Liraglutida/farmacología , Masculino , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratas , Ratas Sprague-Dawley , Hemorragia Subaracnoidea/metabolismo , Hemorragia Subaracnoidea/patología
12.
Chin J Integr Med ; 26(7): 510-518, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31970676

RESUMEN

OBJECTIVE: To evaluate the effect of baicalin on subarachnoid hemorrhage (SAH) in rats and explore the potential mechanisms. METHODS: Sprague-Dawley rats underwent experimental SAH and received treatment with baicalin at 10 or 50 mg/kg after 2 and 12 h of SAH. Neurological scores, brain water content, Evans-blue extravasation, and levels of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), myeloperoxidase (MPO), and malondialdehyde (MDA) were measured 24 h after SAH. Expression of nuclear factor erythroid-related factor 2 (Nrf2), NAD(P)H: quinone oxidoreductase 1 (NQO1), matrix metalloproteinase-9 (MMP-9), aquaporin 4 (AQP4), occludin, and zonulaoccludens-1 (ZO-1) were detected in the brain by Western blot. Heme oxygenase-1 (HO-1) was detected by quantitative polymerase chain reaction, and tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were assessed by enzyme-linked immunosorbent assay. RESULTS: Baicalin attenuated EBI 24 h after SAH in rats (P<0.05). Baicalin elevated neurological scores, GSH-Px, SOD, and increased the expression of Nrf2, NQO1, HO-1, occludin, and ZO-1 in SAH rats (P<0.05 or P<0.01). Baicalin reduced MPO, MDA, and the expression of MMP-9, AQP4, TNF-α, and IL-1ß (P<0.05 or P<0.01). CONCLUSION: Baicalin reduced SAH-induced EBI, partially via activation of the Nrf2/HO-1 pathway and inhibition of MMP-9 and AQP4.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Flavonoides/farmacología , Hemorragia Subaracnoidea/tratamiento farmacológico , Animales , Antiinflamatorios no Esteroideos/farmacología , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Sprague-Dawley
13.
J Stroke Cerebrovasc Dis ; 28(12): 104375, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31590996

RESUMEN

BACKGROUND: Our previous study showed that propofol, one of the widely used anesthetic agents, can attenuate subarachnoid hemorrhage (SAH)-induced early brain injury (EBI) via inhibiting inflammatory and oxidative reaction. However, it is perplexing whether propofol attenuates inflammatory and oxidative reaction through modulating PI3K/Akt pathway. The present study investigated whether PI3K/Akt pathway is involved in propofol's anti-inflammation, antioxidation, and neuroprotection against SAH-induced EBI. MATERIALS AND METHODS: Adult Sprague-Dawley rats underwent SAH and received treatment with propofol or vehicle after 2 and 12 hours of SAH. LY294002 was injected intracerebroventricularly to selectively inhibit PI3K/Akt signaling. Mortality, SAH grading, neurological scores, brain water content, evans blue extravasation, myeloperoxidase, malondialdehyde, superoxide dismutase, and glutathione peroxidase were measured 24 hours after SAH. Immunoreactivity of p-Akt, t-Akt, nuclear factor- kappa B (NF-κB) p65, nuclear factor erythroid-related factor 2 (Nrf2), NAD(P)H:quinone oxidoreductase (NQO1), and cyclooxygenase-2 (COX-2) in rat brain was determined by western blot. Tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) in rat brain were examined by ELISA. RESULTS: Propofol significantly reduces neurological dysfunction, BBB permeability, brain edema, inflammation, and oxidative stress, all of which were reversed by LY294002. Propofol significantly upregulates the immunoreactivity of p-Akt, Nrf2, and NQO1, all of which were abolished by LY294002. Propofol significantly downregulates the overexpression of NF-κB p65, COX-2, TNF-α, and IL-1ß, all of which were inhibited by LY294002. CONCLUSION: These results suggest that propofol attenuates SAH-induced EBI by inhibiting inflammatory reaction and oxidative stress, which might be associated with the activation of PI3K/Akt signaling pathway.


Asunto(s)
Antiinflamatorios/farmacología , Edema Encefálico/prevención & control , Encéfalo/efectos de los fármacos , Encefalitis/prevención & control , Fármacos Neuroprotectores/farmacología , Fosfatidilinositol 3-Quinasa/metabolismo , Propofol/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Hemorragia Subaracnoidea/tratamiento farmacológico , Animales , Encéfalo/enzimología , Encéfalo/patología , Edema Encefálico/enzimología , Edema Encefálico/patología , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Encefalitis/enzimología , Encefalitis/patología , Interleucina-1beta/metabolismo , Masculino , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Ratas Sprague-Dawley , Transducción de Señal , Hemorragia Subaracnoidea/enzimología , Hemorragia Subaracnoidea/patología , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
14.
Exp Ther Med ; 17(4): 3215-3221, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30936996

RESUMEN

Previous studies have demonstrated that inflammation and disruption of the blood-brain barrier (BBB) are important pathological processes during focal cerebral ischemia. Therefore, the present study evaluated the neuroprotective effects of resveratrol against brain damage, inflammation and BBB disruption in rats with focal cerebral ischemia and assessed the potential underlying molecular mechanisms. Sprague-Dawley rats underwent cerebral ischemia/reperfusion (IR) and then received intraperitoneal resveratrol (10 and 100 mg/kg) 2 h following the onset of ischemia. Following 24 h of ischemia, neurological deficit scores, cerebral infarctions, morphological characteristics, cerebral water content, myeloperoxidase (MPO) activity and Evans blue extravasation were assessed. Additionally, the protein expression levels of Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB p65 were detected using western blot analyses, the mRNA expression levels of cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9) were examined by reverse-transcription polymerase chain reaction, and tumor necrosis factor (TNF)-α and interleukin (IL)-1ß blood levels were determined by ELISA. Resveratrol significantly reduced neurological deficit scores, cerebral infarct sizes, neuronal injury, MPO activity and EB content. Cerebral ischemia increased the expression levels of TLR4, NF-κB p65, COX-2, MMP-9, TNF-α and IL-1ß, but all of these factors were reduced by resveratrol. In conclusion, the present data suggest that resveratrol reduces inflammation, BBB disruption and brain damage in rats following focal cerebral ischemia. Additionally, the neuroprotective effects of resveratrol against cerebral ischemia may be associated with downregulation of the TLR4 pathway.

15.
Chin Med J (Engl) ; 131(13): 1591-1597, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29941713

RESUMEN

BACKGROUND: Nanotechnology is emerging as a promising tool to perform noninvasive therapy and optical imaging. However, nanomedicine may pose a potential risk of toxicity during in vivo applications. In this study, we aimed to investigate the potential toxicity of rare-earth nanoparticles (RENPs) using mice as models. METHODS: We synthesized RENPs through a typical co-precipitation method. Institute of Cancer Research (ICR) mice were randomly divided into seven groups including a control group and six experimental groups (10 mice per group). ICR mice were intravenously injected with bare RENPs at a daily dose of 0, 0.5, 1.0, and 1.5 mg/kg for 7 days. To evaluate the toxicity of these nanoparticles in mice, magnetic resonance imaging (MRI) was performed to assess their uptake in mice. In addition, hematological and biochemical analyses were conducted to evaluate any impairment in the organ functions of ICR mice. The analysis of variance (ANOVA) followed by a one-way ANOVA test was used in this study. A repeated measures' analysis was used to determine any significant differences in white blood cell (WBC), alanine aminotransferase (ALT), and creatinine (CREA) levels at different evaluation times in each group. RESULTS: We demonstrated the successful synthesis of two different sizes (10 nm and 100 nm) of RENPs. Their physical properties were characterized by transmission electron microscopy and a 980 nm laser diode. Results of MRI study revealed the distribution and circulation of the RENPs in the liver. In addition, the hematological analysis found an increase of WBCs to (8.69 ± 0.85) × 109/L at the 28th day, which is indicative of inflammation in the mouse treated with 1.5 mg/kg NaYbF4:Er nanoparticles. Furthermore, the biochemical analysis indicated increased levels of ALT ([64.20 ± 15.50] U/L) and CREA ([27.80 ± 3.56] µmol/L) at the 28th day, particularly those injected with 1.5 mg/kg NaYbF4:Er nanoparticles. These results suggested the physiological and pathological damage caused by these nanoparticles to the organs and tissues of mice, especially to liver and kidney. CONCLUSION: The use of bare RENPs may cause possible hepatotoxicity and nephritictoxicity in mice.


Asunto(s)
Inflamación , Metales de Tierras Raras/toxicidad , Nanopartículas/toxicidad , Alanina Transaminasa , Animales , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones
16.
Exp Ther Med ; 12(3): 1405-1411, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27588062

RESUMEN

The aim of the present study was to determine the effect of baicalin on the expression of miR-497 and its target B-cell lymphoma-2 (Bcl-2) in the hippocampus of kainic acid (KA)-induced epileptic mice. To establish status epilepticus (SE), 0.1 µg/5 µl KA was injected into the lateral cerebral ventricle in mice, which then received an intraperitoneal injection of baicalin (100 mg/kg) after 1 and 8 h. Hematoxylin and eosin staining was used to observe the pathological changes in morphology and neuronal apoptosis was determined by terminal transferase-mediated dUTP nick end-labeling staining. Western blot analysis was used to detect the expression of Bcl-2 and cleaved caspase-3 proteins in the hippocampus, while reverse transcription-quantitative polymerase chain reaction was used to quantify hippocampal miR-497 expression. The results showed that baicalin significantly attenuated neuronal damage and apoptosis in the hippocampus 72 h after SE. In addition, baicalin decreased SE-induced expression of miR-497 and cleaved caspase-3 protein, while upregulating the expression of Bcl-2 protein. In conclusion, the present results suggest that baicalin possesses potent antiapoptotic properties and attenuates hippocampal injury in mice after SE, which may be associated with the downregulation of miR-497 and cleaved caspase-3 and the upregulation of Bcl-2.

17.
Neurochem Res ; 41(10): 2779-2787, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27380038

RESUMEN

Previous studies from our laboratories showed that an anti-inflammatory drug, 5-lipoxygenase inhibitor zileuton, attenuates ischemic brain damage via inhibiting inflammatory reaction. However, it was elusive whether zileuton attenuates inflammatory reaction and ischemic brain damage through the modulation of PI3K/Akt signaling pathway. In the present study, we, for the first time, investigated whether PI3K/Akt pathway was involved in zileuton's anti-inflammatory and neuroprotective properties against brain damage following experimental ischemic stroke. Adult male Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAO), then received treatment with zileuton or vehicle after the onset of ischemia. LY294002 was injected intracerebroventricularly to inhibit the activation of PI3K/Akt signaling pathway selectively. Neurological deficit scores, cerebral infarct volume, morphological characteristic and cerebral water content were assessed 24 h after cerebral ischemia. The enzymatic activity of myeloperoxidase (MPO) was measured 24 h after cerebral ischemia. Expression of p-Akt, t-Akt and COX-2 in ischemic brain were determined by western blot. NF-κB p65 immuno-positive cells in ischemic brain were detected 24 h after cerebral ischemia. The content of TNF-α in blood was examined by ELISA. 5-LOX inhibitor zileuton significantly reduces neurological deficit scores, cerebral infarct volume, cerebral water content, ischemic neuronal injury and the enzymatic activity of MPO, all of which were abolished by LY294002 administration. Zileuton significantly up-regulates the expression of p-Akt, which was inhibited by LY294002 administration. Zileuton significantly down-regulates the over-expression of NF-κB p65 and COX-2, and attenuates the release of TNF-α, all of which were disminished by LY294002 administration. These results suggest that zileuton attenuates ischemic brain damage by inhibiting inflammatory reaction through the activation of PI3K/Akt signaling pathway.


Asunto(s)
Isquemia Encefálica/metabolismo , Encéfalo/efectos de los fármacos , Hidroxiurea/análogos & derivados , Inhibidores de la Lipooxigenasa/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Araquidonato 5-Lipooxigenasa/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Hidroxiurea/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Inflamación/metabolismo , Masculino , Fármacos Neuroprotectores/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley
18.
J Mol Neurosci ; 57(4): 538-45, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26342279

RESUMEN

Our previous studies demonstrated that propofol protects rat brain against focal cerebral ischemia. However, whether propofol attenuates early brain injury after subarachnoid hemorrhage in rats remains unknown until now. The present study was performed to evaluate the effect of propofol on early brain injury after subarachnoid hemorrhage in rats and further explore the potential mechanisms. Sprague-Dawley rats underwent subarachnoid hemorrhage (SAH) by endovascular perforation then received treatment with propofol (10 or 50 mg/kg) or vehicle after 2 and 12 h of SAH. SAH grading, neurological scores, brain water content, Evans blue extravasation, the myeloperoxidase activity, and malondialdehyde (MDA) content were measured 24 h after SAH. Expression of nuclear factor erythroid-related factor 2 (Nrf2), nuclear factor-kappa B (NF-κB) p65, and aquaporin 4 (AQP4) expression in rat brain were detected by Western blot. Expression of cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9) were determined by reverse transcription-polymerase chain reaction (RT-PCR). Expressions of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were assessed by ELISA. Neurological scores, brain water content, Evans blue extravasation, the myeloperoxidase activity, and MDA content were significantly reduced by propofol. Furthermore, expression of Nrf2 in rat brain was upregulated by propofol, and expression of NF-κB p65, AQP4, COX-2, MMP-9, TNF-α, and IL-1ß in rat brain were attenuated by propofol. Our results demonstrated that propofol improves neurological scores, reduces brain edema, blood-brain barrier (BBB) permeability, inflammatory reaction, and lipid peroxidation in rats of SAH. Propofol exerts neuroprotection against SAH-induced early brain injury, which might be associated with the inhibition of inflammation and lipid peroxidation.


Asunto(s)
Propofol/uso terapéutico , Hemorragia Subaracnoidea/tratamiento farmacológico , Animales , Acuaporina 4/genética , Acuaporina 4/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Propofol/farmacología , Ratas , Ratas Sprague-Dawley , Hemorragia Subaracnoidea/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
19.
J Mol Neurosci ; 55(4): 912-22, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25338292

RESUMEN

Ischemic preconditioning (IPC) has been demonstrated to provide a neuroprotection against brain damage produced by focal cerebral ischemia. However, it is elusive whether ischemic preconditioning attenuates ischemic brain damage through modulating phosphatidylinositol 3-kinase/Akt (PI3K/Akt) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. In the present study, we first explored the best scheme of repetitive ischemic preconditioning (RIPC) to protect rat brain against ischemic damage and then further investigated the underlying mechanisms in RIPC's neuroprotection. Adult male Sprague-Dawley rats underwent ischemic preconditioning or (and) middle cerebral artery occlusion (MCAO). LY294002 or (and) PD98059 were injected intracerebroventricularly to selectively inhibit the activation of PI3K/Akt or ERK1/2. Neurological deficit scores, cerebral infarct volume, and morphological characteristic were detected at corresponding time after cerebral ischemia. The enzymatic activity of myeloperoxidase (MPO) was measured 24 h after cerebral ischemia. Expressions of p-Akt, t-Akt, p-ERK1/2, t-ERK1/2, nuclear factor-kappa B (NF-κB) p65, and cyclooxygenase-2 (COX-2) in ischemic brain were determined by Western blot. The release of tumor necrosis factor-α (TNF-α) in blood was examined by ELISA. In the various schemes of RIPC, IPC2 × 5 min causes less neuronal damage in the cortex and subcortex of ischemic brain and provides an obvious alleviation of cerebral infarction and neurological deficit after lethal ischemia. IPC2 × 5 min significantly reduces cerebral infarct volume, neurological deficit scores, and MPO activity; all of which were diminished by LY294002 or (and) PD98059. IPC2 × 5 min significantly upregulates the expressions of p-Akt and p-ERK1/2, which were inhibited by LY294002 or (and) PD98059. IPC2 × 5 min significantly downregulates the expressions of NF-κB p65 and COX-2 and attenuates the release of TNF-α; all of which were abolished by LY294002 or (and) PD98059. IPC2 × 5 min is the best scheme of RIPC to protect rat brain against cerebral ischemia. IPC2 × 5 min attenuates brain damage in rats subjected to lethal ischemia, and this neuroprotection is associated with inhibition of neuroinflammation through modulating PI3K/Akt and ERK1/2 signaling pathway.


Asunto(s)
Infarto de la Arteria Cerebral Media/metabolismo , Precondicionamiento Isquémico , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Infarto de la Arteria Cerebral Media/terapia , Inflamación/metabolismo , Inflamación/terapia , Sistema de Señalización de MAP Quinasas , Masculino , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , FN-kappa B/genética , FN-kappa B/metabolismo , Peroxidasa/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA