Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607185

RESUMEN

The enhanced Coulomb interaction in two-dimensional semiconductors leads to tightly bound electron-hole pairs known as excitons. The large binding energy of excitons enables the formation of Rydberg excitons with high principal quantum numbers (n), analogous to Rydberg atoms. Rydberg excitons possess strong interactions among themselves as well as sensitive responses to external stimuli. Here, we probe Rydberg exciton resonances through photocurrent spectroscopy in a monolayer WSe2 p-n junction formed by a split-gate geometry. We show that an external in-plane electric field not only induces a large Stark shift of Rydberg excitons up to quantum principal number 3 but also mixes different orbitals and brightens otherwise dark states such as 3p and 3d. Our study provides an exciting platform for engineering Rydberg excitons for new quantum states and quantum sensing.

3.
Nat Commun ; 14(1): 4604, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528094

RESUMEN

Transition metal dichalcogenide (TMDC) moiré superlattices, owing to the moiré flatbands and strong correlation, can host periodic electron crystals and fascinating correlated physics. The TMDC heterojunctions in the type-II alignment also enable long-lived interlayer excitons that are promising for correlated bosonic states, while the interaction is dictated by the asymmetry of the heterojunction. Here we demonstrate a new excitonic state, quadrupolar exciton, in a symmetric WSe2-WS2-WSe2 trilayer moiré superlattice. The quadrupolar excitons exhibit a quadratic dependence on the electric field, distinctively different from the linear Stark shift of the dipolar excitons in heterobilayers. This quadrupolar exciton stems from the hybridization of WSe2 valence moiré flatbands. The same mechanism also gives rise to an interlayer Mott insulator state, in which the two WSe2 layers share one hole laterally confined in one moiré unit cell. In contrast, the hole occupation probability in each layer can be continuously tuned via an out-of-plane electric field, reaching 100% in the top or bottom WSe2 under a large electric field, accompanying the transition from quadrupolar excitons to dipolar excitons. Our work demonstrates a trilayer moiré system as a new exciting playground for realizing novel correlated states and engineering quantum phase transitions.

4.
Nat Commun ; 14(1): 5042, 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598211

RESUMEN

Moiré superlattices of semiconducting transition metal dichalcogenides enable unprecedented spatial control of electron wavefunctions, leading to emerging quantum states. The breaking of translational symmetry further introduces a new degree of freedom: high symmetry moiré sites of energy minima behaving as spatially separated quantum dots. We demonstrate the superposition between two moiré sites by constructing a trilayer WSe2/monolayer WS2 moiré heterojunction. The two moiré sites in the first layer WSe2 interfacing WS2 allow the formation of two different interlayer excitons, with the hole residing in either moiré site of the first layer WSe2 and the electron in the third layer WSe2. An electric field can drive the hybridization of either of the interlayer excitons with the intralayer excitons in the third WSe2 layer, realizing the continuous tuning of interlayer exciton hopping between two moiré sites and a superposition of the two interlayer excitons, distinctively different from the natural trilayer WSe2.

5.
ACS Appl Mater Interfaces ; 15(15): 18962-18972, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37014669

RESUMEN

The non-toxic and stable chalcogenide perovskite BaZrS3 fulfills many key optoelectronic properties for a high-efficiency photovoltaic material. It has been shown to possess a direct band gap with a large absorption coefficient and good carrier mobility values. With a reported band gap of 1.7-1.8 eV, BaZrS3 is a good candidate for tandem solar cell materials; however, its band gap is significantly larger than the optimal value for a high-efficiency single-junction solar cell (∼1.3 eV, Shockley-Queisser limit)─thus doping is required to lower the band gap. By combining first-principles calculations and machine learning algorithms, we are able to identify and predict the best dopants for the BaZrS3 perovskites for potential future photovoltaic devices with a band gap within the Shockley-Queisser limit. It is found that the Ca dopant at the Ba site or Ti dopant at the Zr site is the best candidate dopant. Based on this information, we report for the first time partial doping at the Ba site in BaZrS3 with Ca (i.e., Ba1-xCaxZrS3) and compare its photoluminescence with Ti-doped perovskites [i.e., Ba(Zr1-xTix)S3]. Synthesized (Ba,Ca)ZrS3 perovskites show a reduction in the band gap from ∼1.75 to ∼1.26 eV with <2 atom % Ca doping. Our results indicate that for the purpose of band gap tuning for photovoltaic applications, Ca-doping at the Ba-site is superior to Ti-doping at the Zr-site reported previously.

6.
Nat Commun ; 13(1): 4810, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35974047

RESUMEN

Moiré coupling in transition metal dichalcogenides (TMDCs) superlattices introduces flat minibands that enable strong electronic correlation and fascinating correlated states, and it also modifies the strong Coulomb-interaction-driven excitons and gives rise to moiré excitons. Here, we introduce the layer degree of freedom to the WSe2/WS2 moiré superlattice by changing WSe2 from monolayer to bilayer and trilayer. We observe systematic changes of optical spectra of the moiré excitons, which directly confirm the highly interfacial nature of moiré coupling at the WSe2/WS2 interface. In addition, the energy resonances of moiré excitons are strongly modified, with their separation significantly increased in multilayer WSe2/monolayer WS2 moiré superlattice. The additional WSe2 layers also modulate the strong electronic correlation strength, evidenced by the reduced Mott transition temperature with added WSe2 layer(s). The layer dependence of both moiré excitons and correlated electronic states can be well described by our theoretical model. Our study presents a new method to tune the strong electronic correlation and moiré exciton bands in the TMDCs moiré superlattices, ushering in an exciting platform to engineer quantum phenomena stemming from strong correlation and Coulomb interaction.

7.
Phys Rev Lett ; 129(7): 076801, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36018693

RESUMEN

In the archetypal monolayer semiconductor WSe_{2}, the distinct ordering of spin-polarized valleys (low-energy pockets) in the conduction band allows for studies of not only simple neutral excitons and charged excitons (i.e., trions), but also more complex many-body states that are predicted at higher electron densities. We discuss magneto-optical measurements of electron-rich WSe_{2} monolayers and interpret the spectral lines that emerge at high electron doping as optical transitions of six-body exciton states ("hexcitons") and eight-body exciton states ("oxcitons"). These many-body states emerge when a photoexcited electron-hole pair interacts simultaneously with multiple Fermi seas, each having distinguishable spin and valley quantum numbers. In addition, we explain the relations between dark trions and satellite optical transitions of hexcitons in the photoluminescence spectrum.

8.
ACS Appl Mater Interfaces ; 13(27): 32450-32460, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34196518

RESUMEN

Lead iodide (PbI2) as a layered material has emerged as an excellent candidate for optoelectronics in the visible and ultraviolet regime. Micrometer-sized flakes synthesized by mechanical exfoliation from bulk crystals or by physical vapor deposition have shown a plethora of applications from low-threshold lasing at room temperature to high-performance photodetectors with large responsivity and faster response. However, large-area centimeter-sized growth of epitaxial thin films of PbI2 with well-controlled orientation has been challenging. Additionally, the nature of grain boundaries in epitaxial thin films of PbI2 remains elusive. Here, we use mica as a model substrate to unravel the growth mechanism of large-area epitaxial PbI2 thin films. The partial growth leading to uncoalesced domains reveals the existence of inversion domain boundaries in epitaxial PbI2 thin films on mica. Combining the experimental results with first-principles calculations, we also develop an understanding of the thermodynamic and kinetic factors that govern the growth mechanism, which paves the way for the synthesis of high-quality large-area PbI2 on other substrates and heterostructures of PbI2 on single-crystalline graphene. The ability to reproducibly synthesize high-quality large-area thin films with precise control over orientation and tunable optical properties could open up unique and hitherto unavailable opportunities for the use of PbI2 and its heterostructures in optoelectronics, twistronics, substrate engineering, and strain engineering.

9.
Nat Commun ; 12(1): 3608, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34127668

RESUMEN

Heterobilayers of transition metal dichalcogenides (TMDCs) can form a moiré superlattice with flat minibands, which enables strong electron interaction and leads to various fascinating correlated states. These heterobilayers also host interlayer excitons in a type-II band alignment, in which optically excited electrons and holes reside on different layers but remain bound by the Coulomb interaction. Here we explore the unique setting of interlayer excitons interacting with strongly correlated electrons, and we show that the photoluminescence (PL) of interlayer excitons sensitively signals the onset of various correlated insulating states as the band filling is varied. When the system is in one of such states, the PL of interlayer excitons is relatively amplified at increased optical excitation power due to reduced mobility, and the valley polarization of interlayer excitons is enhanced. The moiré superlattice of the TMDC heterobilayer presents an exciting platform to engineer interlayer excitons through the periodic correlated electron states.

10.
Nanotechnology ; 32(17): 17LT01, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33620033

RESUMEN

Despite the broadband response, limited optical absorption at a particular wavelength hinders the development of optoelectronics based on Dirac fermions. Heterostructures of graphene and various semiconductors have been explored for this purpose, while non-ideal interfaces often limit the performance. The topological insulator (TI) is a natural hybrid system, with the surface states hosting high-mobility Dirac fermions and the small-bandgap semiconducting bulk state strongly absorbing light. In this work, we show a large photocurrent response from a field effect transistor device based on intrinsic TI Sn-Bi1.1Sb0.9Te2S (Sn-BSTS). The photocurrent response is non-volatile and sensitively depends on the initial Fermi energy of the surface state, and it can be erased by controlling the gate voltage. Our observations can be explained with a remote photo-doping mechanism, in which the light excites the defects in the bulk and frees the localized carriers to the surface state. This photodoping modulates the surface state conductivity without compromising the mobility, and it also significantly modify the quantum Hall effect of the surface state. Our work thus illustrates a route to reversibly manipulate the surface states through optical excitation, shedding light into utilizing topological surface states for quantum optoelectronics.

11.
Nanoscale ; 12(40): 20952-20964, 2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33090173

RESUMEN

Metal chalcogenide nanoparticles offer vast control over their optoelectronic properties via size, shape, composition, and morphology which has led to their use across fields including optoelectronics, energy storage, and catalysis. While cadmium and lead-based nanocrystals are prevalent in applications, concerns over their toxicity have motivated researchers to explore alternate classes of nanomaterials based on environmentally benign metals such as zinc and tin. The goal of this research is to identify material systems that offer comparable performance to existing metal chalcogenide systems from abundant, recyclable, and environmentally benign materials. With band gaps that span the visible through the infrared, II-V direct band gap semiconductors such as tetragonal zinc phosphide (α-Zn3P2) are promising candidates for optoelectronics. To date, syntheses of α-Zn3P2 nanoparticles have been hindered because of the toxicity of zinc and phosphorus precursors, surface oxidation, and defect states leading to carrier trapping and low photoluminescence quantum yield. This work reports a colloidal synthesis of quantum confined α-Zn3P2 nanoparticles from common phosphorus precursor tris(trimethylsilyl)phosphine and environmentally benign zinc carboxylates. Shelling of the nanoparticles with zinc sulfide is shown as a method of preventing oxidation and improving the optical properties of the nanoparticles. These results show a route to stabilizing α-Zn3P2 nanoparticles for optoelectronic device applications.

12.
Nat Nanotechnol ; 15(12): 1019-1024, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33046843

RESUMEN

Electrets are dielectric materials that have a quasi-permanent dipole polarization. A single-molecule electret is a long-sought-after nanoscale component because it can lead to miniaturized non-volatile memory storage devices. The signature of a single-molecule electret is the switching between two electric dipole states by an external electric field. The existence of these electrets has remained controversial because of the poor electric dipole stability in single molecules. Here we report the observation of a gate-controlled switching between two electronic states in Gd@C82. The encapsulated Gd atom forms a charged centre that sets up two single-electron transport channels. A gate voltage of ±11 V (corresponding to a coercive field of ~50 mV Å-1) switches the system between the two transport channels with a ferroelectricity-like hysteresis loop. Using density functional theory, we assign the two states to two different permanent electrical dipole orientations generated from the Gd atom being trapped at two different sites inside the C82 cage. The two dipole states are separated by a transition energy barrier of 11 meV. The conductance switching is then attributed to the electric-field-driven reorientation of the individual dipole, as the coercive field provides the necessary energy to overcome the transition barrier.

13.
Nano Lett ; 20(10): 7635-7641, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32902286

RESUMEN

A strong Coulomb interaction could lead to a strongly bound exciton with high-order excited states, similar to the Rydberg atom. The interaction of giant Rydberg excitons can be engineered for a correlated ordered exciton array with a Rydberg blockade, which is promising for realizing quantum simulation. Monolayer transition metal dichalcogenides, with their greatly enhanced Coulomb interaction, are an ideal platform to host the Rydberg excitons in two dimensions. Here, we employ helicity-resolved magneto-photocurrent spectroscopy to identify Rydberg exciton states up to 11s in monolayer WSe2. Notably, the radius of the Rydberg exciton at 11s can be as large as 214 nm, orders of magnitude larger than the 1s exciton. The giant valley-polarized Rydberg exciton not only provides an exciting platform to study the strong exciton-exciton interaction and nonlinear exciton response but also allows the investigation of the different interplay between the Coulomb interaction and Landau quantization, tunable from a low- to high-magnetic-field limit.

14.
Nano Lett ; 20(7): 5292-5300, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32519865

RESUMEN

Monolayer transition-metal dichalcogenides (TMDs) are the first truly two-dimensional (2D) semiconductor, providing an excellent platform to investigate light-matter interaction in the 2D limit. The inherently strong excitonic response in monolayer TMDs can be further enhanced by exploiting the temporal confinement of light in nanophotonic structures. Here, we demonstrate a 2D exciton-polariton system by strongly coupling atomically thin tungsten diselenide (WSe2) monolayer to a silicon nitride (SiN) metasurface. Via energy-momentum spectroscopy of the WSe2-metasurface system, we observed the characteristic anticrossing of the polariton dispersion both in the reflection and photoluminescence spectrum. A Rabi splitting of 18 meV was observed which matched well with our numerical simulation. Moreover, we showed that the Rabi splitting, the polariton dispersion, and the far-field emission pattern could be tailored with subwavelength-scale engineering of the optical meta-atoms. Our platform thus opens the door for the future development of novel, exotic exciton-polariton devices by advanced meta-optical engineering.

15.
Nat Commun ; 11(1): 3104, 2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32561746

RESUMEN

Strong many-body interaction in two-dimensional transitional metal dichalcogenides provides a unique platform to study the interplay between different quasiparticles, such as prominent phonon replica emission and modified valley-selection rules. A large out-of-plane magnetic field is expected to modify the exciton-phonon interactions by quantizing excitons into discrete Landau levels, which is largely unexplored. Here, we observe the Landau levels originating from phonon-exciton complexes and directly probe exciton-phonon interaction under a quantizing magnetic field. Phonon-exciton interaction lifts the inter-Landau-level transition selection rules for dark trions, manifested by a distinctively different Landau fan pattern compared to bright trions. This allows us to experimentally extract the effective mass of both holes and electrons. The onset of Landau quantization coincides with a significant increase of the valley-Zeeman shift, suggesting strong many-body effects on the phonon-exciton interaction. Our work demonstrates monolayer WSe2 as an intriguing playground to study phonon-exciton interactions and their interplay with charge, spin, and valley.

16.
ACS Nano ; 14(5): 6323-6330, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32364693

RESUMEN

Heterostructures of two-dimensional transition metal dichalcogenides (TMDs) can offer a plethora of opportunities in condensed matter physics, materials science, and device engineering. However, despite state-of-the-art demonstrations, most current methods lack enough degrees of freedom for the synthesis of heterostructures with engineerable properties. Here, we demonstrate that combining a postgrowth chalcogen-swapping procedure with the standard lithography enables the realization of lateral TMD heterostructures with controllable dimensions and spatial profiles in predefined locations on a substrate. Indeed, our protocol receives a monolithic TMD monolayer (e.g., MoSe2) as the input and delivers lateral heterostructures (e.g., MoSe2-MoS2) with fully engineerable morphologies. In addition, through establishing MoS2xSe2(1-x)-MoS2ySe2(1-y) lateral junctions, our synthesis protocol offers an extra degree of freedom for engineering the band gap energies up to ∼320 meV on each side of the heterostructure junction via changing x and y independently. Our electron microscopy analysis reveals that such continuous tuning stems from the random intermixing of sulfur and selenium atoms following the chalcogen swapping. We believe that, by adding an engineering flavor to the synthesis of TMD heterostructures, our study lowers the barrier for the integration of two-dimensional materials into practical optoelectronic platforms.

17.
Nat Commun ; 11(1): 2640, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457328

RESUMEN

The heterostructure of monolayer transition metal dichalcogenides (TMDCs) provides a unique platform to manipulate exciton dynamics. The ultrafast carrier transfer across the van der Waals interface of the TMDC hetero-bilayer can efficiently separate electrons and holes in the intralayer excitons with a type II alignment, but it will funnel excitons into one layer with a type I alignment. In this work, we demonstrate the reversible switch from exciton dissociation to exciton funneling in a MoSe2/WS2 heterostructure, which manifests itself as the photoluminescence (PL) quenching to PL enhancement transition. This transition was realized through effectively controlling the quantum capacitance of both MoSe2 and WS2 layers with gating. PL excitation spectroscopy study unveils that PL enhancement arises from the blockage of the optically excited electron transfer from MoSe2 to WS2. Our work demonstrates electrical control of photoexcited carrier transfer across the van der Waals interface, the understanding of which promises applications in quantum optoelectronics.

18.
Nano Lett ; 20(1): 694-700, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31865705

RESUMEN

Transition metal dichalcogenides (TMDCs) heterostructure with a type II alignment hosts unique interlayer excitons with the possibility of spin-triplet and spin-singlet states. However, the associated spectroscopy signatures remain elusive, strongly hindering the understanding of the Moiré potential modulation of the interlayer exciton. In this work, we unambiguously identify the spin-singlet and spin-triplet interlayer excitons in the WSe2/MoSe2 heterobilayer with a 60° twist angle through the gate- and magnetic field-dependent photoluminescence spectroscopy. Both the singlet and triplet interlayer excitons show giant valley-Zeeman splitting between the K and K' valleys, a result of the large Landé g-factor of the singlet interlayer exciton and triplet interlayer exciton, which are experimentally determined to be ∼10.7 and ∼15.2, respectively, which is in good agreement with theoretical expectation. The photoluminescence (PL) from the singlet and triplet interlayer excitons show opposite helicities, determined by the atomic registry. Helicity-resolved photoluminescence excitation (PLE) spectroscopy study shows that both singlet and triplet interlayer excitons are highly valley-polarized at the resonant excitation with the valley polarization of the singlet interlayer exciton approaching unity at ∼20 K. The highly valley-polarized singlet and triplet interlayer excitons with giant valley-Zeeman splitting inspire future applications in spintronics and valleytronics.

19.
ACS Nano ; 13(12): 14107-14113, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31765125

RESUMEN

Inversion symmetry breaking and 3-fold rotation symmetry grant the valley degree of freedom to the robust exciton in monolayer transition-metal dichalcogenides, which can be exploited for valleytronics applications. However, the short lifetime of the exciton significantly constrains the possible applications. In contrast, the dark exciton could be long-lived but does not necessarily possess the valley degree of freedom. In this work, we report the identification of the momentum-dark, intervalley exciton in monolayer WSe2 through low-temperature magneto-photoluminescence spectra. Interestingly, the intervalley exciton is brightened through the emission of a chiral phonon at the corners of the Brillouin zone (K point), and the pseudoangular momentum of the phonon is transferred to the emitted photon to preserve the valley information. The chiral phonon energy is determined to be ∼23 meV, based on the experimentally extracted exchange interaction (∼7 meV), in excellent agreement with the theoretical expectation of 24.6 meV. The long-lived intervalley exciton with valley degree of freedom adds an exciting quasiparticle for valleytronics, and the coupling between the chiral phonon and intervalley exciton furnishes a venue for valley spin manipulation.

20.
Nat Commun ; 10(1): 4649, 2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31604933

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...