Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(14): e202318897, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38326236

RESUMEN

Mirror-image proteins (D-proteins) are useful in biomedical research for purposes such as mirror-image screening for D-peptide drug discovery, but the chemical synthesis of many D-proteins is often low yielding due to the poor solubility or aggregation of their constituent peptide segments. Here, we report a Lys-C protease-cleavable solubilizing tag and its use to synthesize difficult-to-obtain D-proteins. Our tag is easily installed onto multiple amino acids such as DLys, DSer, DThr, and/or the N-terminal amino acid of hydrophobic D-peptides, is impervious to various reaction conditions, such as peptide synthesis, ligation, desulfurization, and transition metal-mediated deprotection, and yet can be completely removed by Lys-C protease under denaturing conditions to give the desired D-protein. The efficacy and practicality of the new method were exemplified in the synthesis of two challenging D-proteins: D-enantiomers of programmed cell death protein 1 IgV domain and SARS-CoV-2 envelope protein, in high yield. This work demonstrates that the enzymatic cleavage of solubilizing tags under denaturing conditions is feasible, thus paving the way for the production of more D-proteins.


Asunto(s)
Péptidos , Proteínas , Proteínas/química , Péptidos/química , Aminoácidos/química , Técnicas de Química Sintética/métodos , Péptido Hidrolasas , Endopeptidasas
2.
Int J Biol Sci ; 20(2): 621-642, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169638

RESUMEN

Immune checkpoint inhibitors (ICIs) have generated considerable excitement as a novel class of immunotherapeutic agents due to their remarkable efficacy in treating various types of cancer. However, the widespread use of ICIs has brought about a number of safety concerns, especially the development of immune-related adverse events (irAEs). These serious complications could result in treatment discontinuation and even life-threatening consequences, making it critical to identify high-risk groups and predictive markers of irAEs before initiating therapy. To this end, the current article examines several potential predictive markers of irAEs in important organs affected by ICIs. While retrospective studies have yielded some promising results, limitations such as small sample sizes, variable patient populations, and specific cancer types and ICIs studied make it difficult to generalize the findings. Therefore, prospective cohort studies and real-world investigations are needed to validate the potential of different biomarkers in predicting irAEs risk. Overall, identifying predictive markers of irAEs is a crucial step towards improving patient safety and enhancing the management of irAEs. With ongoing research efforts, it is hoped that more accurate and reliable biomarkers will be identified and incorporated into clinical practice to guide treatment decisions and prevent the development of irAEs in susceptible patients.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Estudios Retrospectivos , Estudios Prospectivos , Neoplasias/tratamiento farmacológico , Biomarcadores
3.
Thorac Cancer ; 14(31): 3133-3139, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37718465

RESUMEN

BACKGROUND: The aim of this study was to investigate the efficacy of bevacizumab (Bev) in reducing peritumoral brain edema (PTBE) after stereotactic radiotherapy (SRT) for lung cancer brain metastases. METHODS: A retrospective analysis was conducted on 44 patients with lung cancer brain metastases (70 lesions) who were admitted to our oncology and Gamma Knife center from January 2020 to May 2022. All patients received intracranial SRT and had PTBE. Based on treatment with Bev, patients were categorized as SRT + Bev and SRT groups. Follow-up head magnetic resonance imaging was performed to calculate PTBE and tumor volume changes. The edema index (EI) was used to assess the severity of PTBE. Additionally, the extent of tumor reduction and intracranial progression-free survival (PFS) were compared between the two groups. RESULTS: The SRT + Bev group showed a statistically significant difference in EI values before and after radiotherapy (p = 0.0115), with lower values observed after treatment, but there was no difference in the SRT group (p = 0.4008). There was a difference in the distribution of EI grades in the SRT + Bev group (p = 0.0186), with an increased proportion of patients at grades 1-2 after radiotherapy, while there was no difference in the SRT group (p > 0.9999). Both groups demonstrated a significant reduction in tumor volume after radiotherapy (p < 0.05), but there was no difference in tumor volume changes between the two groups (p = 0.4089). There was no difference in intracranial PFS between the two groups (p = 0.1541). CONCLUSION: Bevacizumab significantly reduces the severity of PTBE after radiotherapy for lung cancer. However, its impact on tumor volume reduction and intracranial PFS does not reach statistical significance.


Asunto(s)
Edema Encefálico , Neoplasias Encefálicas , Neoplasias Pulmonares , Radiocirugia , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/etiología , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/etiología , Edema Encefálico/patología , Estudios Retrospectivos , Radiocirugia/métodos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundario
4.
Am J Transl Res ; 15(8): 5145-5158, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692936

RESUMEN

OBJECTIVES: Clear cell renal cell carcinoma (ccRCC) is a highly prevalent subtype of malignant renal tumor, but unfortunately, the survival rate remains unsatisfactory. The aim of the present study is to explore genomic features that are correlated with cancer stage, allowing for the identification of subgroups of ccRCC patients with high risk of unfavorable outcomes and enabling prompt intervention and treatment. METHODS: We compared the gene expression levels across ccRCC patients with diverse cancer stages from The Cancer Genome Atlas (TCGA) database, which revealed characteristic genes associated with tumor stage. We then extracted prognostic genes and used least absolute shrinkage selection operator (LASSO) regression to select four genes for feature extraction and the construction of a prognostic risk model. RESULTS: We have identified a total of 171 differentially expressed genes (DEGs) that are closely linked to the tumor stage of ccRCC through difference analysis. A prognostic risk model constructed based on the expression levels of ZIC2, TFAP2A-AS1, ITPKA, and SLC16A12 holds significant prognostic value in ccRCC. The results of the functional enrichment analysis imply that the DEGs are mainly involved in the regulation of immune-related signaling pathways, and therefore may have a significant function in immune system regulation of ccRCC. CONCLUSIONS: Our study has successfully identified significant DEGs between high- and low-staging groups of ccRCC using bioinformatics methods. The construction of a prognostic risk model based on the expression levels of ZIC2, TFAP2A-AS1, ITPKA, and SLC16A12 has displayed promising prognostic significance, indicating its valuable potential for clinical application.

5.
Org Lett ; 25(26): 4857-4861, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37358473

RESUMEN

We have described the chemical synthesis of d-Sortase A in large quantity and high purity by a hydrazide ligation strategy. The d-Sortase was fully active toward d-peptides and D/L hybrid proteins, and the ligation efficiency was unaffected by the chirality of the C-terminus substrate. This study points toward using d-sortase ligation as a modern ligation method for d-proteins and D/L hybrid proteins and expands the chemical protein synthesis toolbox in biotechnology.


Asunto(s)
Aminoaciltransferasas , Péptidos , Proteínas Bacterianas/metabolismo , Aminoaciltransferasas/metabolismo
6.
J Environ Manage ; 336: 117632, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36921474

RESUMEN

Although the fates of microplastics (0.1-5 mm) in marine environments and freshwater are increasingly studied, little is known about their vector effect in wastewater treatment plants (WWTPs). Previous studies have evaluated the accumulation of antibiotic resistance genes (ARGs) on microplastics, but there is no direct evidence for the selection and horizontal transfer of ARGs on different microplastics in WWTPs. Here, we show biofilm formation as well as bacterial community and ARGs in these biofilms grown on four kinds of microplastics via incubation in the aerobic and anaerobic tanks of a WWTP. Microplastics showed differential capacities for bacteria and ARGs enrichment, differing from those of the culture environment. Furthermore, ARGs in microplastic biofilms were horizontally transferred at frequencies higher than those in water samples in both tanks. Therefore, microplastics in WWTPs can act as substrates for horizontal transfer of ARGs, potentially causing a great harm to the ecological environment and adversely affecting human health.


Asunto(s)
Antibacterianos , Microplásticos , Humanos , Antibacterianos/farmacología , Plásticos , Genes Bacterianos , Aguas Residuales , Farmacorresistencia Microbiana/genética , Bacterias/genética
7.
Angew Chem Int Ed Engl ; 62(6): e202216365, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36515186

RESUMEN

Chemical synthesis of insulin superfamily proteins (ISPs) has recently been widely studied to develop next-generation drugs. Separate synthesis of multiple peptide fragments and tedious chain-to-chain folding are usually encountered in these studies, limiting accessibility to ISP derivatives. Here we report the finding that insulin superfamily proteins (e.g. H2 relaxin, insulin itself, and H3 relaxin) incorporating a pre-made diaminodiacid bridge at A-B chain terminal disulfide can be easily and rapidly synthesized by a single-shot automated solid-phase synthesis and expedient one-step folding. Our new H2 relaxin analogues exhibit almost identical structures and activities when compared to their natural counterparts. This new synthetic strategy will expediate production of new ISP analogues for pharmaceutical studies.


Asunto(s)
Relaxina , Relaxina/química , Relaxina/metabolismo , Disulfuros/química , Técnicas de Síntesis en Fase Sólida , Proteínas/química , Insulina/química , Receptores Acoplados a Proteínas G/metabolismo
8.
Front Oncol ; 12: 915662, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36033441

RESUMEN

Background: The aberrant regulation of cell cycle is significantly correlated with cancer carcinogenesis and progression, in which cell cycle checkpoints control phase transitions, cell cycle entry, progression, and exit. However, the integrative role of cell cycle checkpoint-related genes (CRGs) in bladder carcinoma (BC) remains unknown. Methods: The transcriptomic data and clinical features of BC patients were downloaded from The Cancer Genome Atlas (TCGA), used to identify CRGs correlated with overall survival (OS) by univariate Cox regression analysis. Then, the multivariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses further developed a prognostic CRG signature, which was validated in three external datasets retrieved from Gene Expression Omnibus (GEO). The receiver operating characteristic curve (ROC) analysis was conducted for evaluating the performance of the CRG signature in prognosis prediction. RNA sequencing (RNA-Seq) was performed to explore the expression difference in the identified CRGs between tumor and normal tissue samples from 11 BC patients in the local cohort. Ultimately, genomic profiles and tumor microenvironment (TME), and the Genomics of Drug Sensitivity in Cancer (GDSC) were investigated to guide precision treatment for BC patients with different CRG features. Results: The novel constructed 23-CRG prognostic signature could stratify BC patients into high-risk and low-risk groups with significantly different outcomes (median OS: 13.64 vs. 104.65 months). Notably, 19 CRGs were the first to be identified as being associated with BC progression. In three additional validation datasets (GSE13507, GSE31684, and GSE32548), higher CRG scores all indicated inferior survival, demonstrating the robust ability of the CRG signature in prognosis prediction. Moreover, the CRG signature as an independent prognostic factor had a robust and stable risk stratification for BC patients with different histological or clinical features. Then, a CRG signature-based nomogram with a better performance in prognostic prediction [concordance index (C-index): 0.76] was established. Functional enrichment analysis revealed that collagen-containing extracellular matrix (ECM), and ECM-related and MAPK signaling pathways were significantly associated with the signature. Further analysis showed that low-risk patients were characterized by particularly distinctive prevalence of FGFR3 (17.03% vs. 6.67%, p < 0.01) and POLE alterations (7.97% vs. 2.50%, p < 0.05), and enrichment of immune infiltrated cells (including CD8+ T cells, CD4+ naïve T cells, follicular helper T cells, Tregs, and myeloid dendritic cells). RNA-seq data in our local cohort supported the findings in the differentially expressed genes (DEGs) between tumor and normal tissue samples, and the difference in TME between high-risk and low-risk groups. Additionally, CRG signature score plus FGFR3 status divided BC patients into four molecular subtypes, with distinct prognosis, TME, and transcriptomic profiling of immune checkpoint genes. Of note, CRG signature score plus FGFR3 status could successfully distinguish BC patients who have a higher possibility of response to immunotherapy or chemotherapy drugs. Conclusions: The CRG signature is a potent prognostic model for BC patients, and in combination with FGFR3 alterations, it had more practical capacity in the prediction of chemotherapy and immunotherapy response, helping guide clinical decision-making.

9.
Toxins (Basel) ; 14(6)2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35737053

RESUMEN

VVA2 (volvatoxin A chain 2) is a cardiotoxic protein purified from Volvariella volvacea. Its biological activities include hemolysis, writhing reaction, neurotoxicity, and ventricular systolic arresting activity. The cytotoxicity of VVA2 was mainly considered due to its pore-forming activity. Here we report a novel biological activity of its variants VVA2 I82E/K86K as a duplex-specific nuclease. Recombinant VVA2 variant I82E/L86K (Re-VVA2 I82E/L86K), deprived of the oligomerization property, shows increased nuclease activity compared to VVA2. Re-VVA2 I82E/L86K converts supercoiled DNA (Replicative form I, RF I) into nicked form (RF II) and linear form (RF III) in the presence of Mg2+ or Mn2+. Besides plasmid DNA, it also exhibits nuclease activity on E. coli genomic DNA rather than ssDNA or RNA. Re-VVA2 I82E/L86K preferentially cleaves dG-dC-rich dsDNA regions and shows the best performance at pH 6-9 and 55 °C. Our structure-function study has revealed amino acid E111 may take an active part in nuclease activity through interacting with metal ions. Based on the sequences of its cleavage sites, a "double-hit" mechanism was thereby proposed. Given that Re-VVA2 I82E/L86K did not exhibit the conserved nuclease structure and sequence, it is considered an atypical duplex-specific nuclease.


Asunto(s)
Cardiotoxinas , Escherichia coli , Agaricales , ADN/química , ADN de Cadena Simple , Endonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
10.
J Am Chem Soc ; 144(1): 349-357, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34978456

RESUMEN

Disulfide-rich proteins are useful as drugs or tool molecules in biomedical studies, but their synthesis is complicated by the difficulties associated with their folding. Here, we describe a removable glycosylation modification (RGM) strategy that expedites the chemical synthesis of correctly folded proteins with multiple or even interchain disulfide bonds. Our strategy comprises the introduction of simple O-linked ß-N-acetylglucosamine (O-GlcNAc) groups at the Ser/Thr sites that effectively improve the folding of disulfide-rich proteins by stabilization of their folding intermediates. After folding, the O-GlcNAc groups can be efficiently removed using O-GlcNAcase (OGA) to afford the correctly folded proteins. Using this strategy, we completed the synthesis of correctly folded hepcidin, an iron-regulating hormone bearing four pairs of disulfide-bonds, and the first total synthesis of correctly folded interleukin-5 (IL-5), a 26 kDa homodimer cytokine responsible for eosinophil growth and differentiation.


Asunto(s)
Acetilglucosamina
11.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34769028

RESUMEN

Ribosome-inactivating proteins (RIPs) hydrolyze the N-glycosidic bond and depurinate a specific adenine residue (A-4324 in rat 28S ribosomal RNA, rRNA) in the conserved α-sarcin/ricin loop (α-SRL) of rRNA. In this study, we have purified and characterized lyophyllin, an unconventional RIP from Lyophyllum shimeji, an edible mushroom. The protein resembles peptidase M35 domain of peptidyl-Lys metalloendopeptidases. Nevertheless, protein either from the mushroom or in recombinant form possessed N-glycosidase and protein synthesis inhibitory activities. A homology model of lyophyllin was constructed. It was found that the zinc binding pocket of this protein resembles the catalytic cleft of a classical RIP, with key amino acids that interact with the adenine substrate in the appropriate positions. Mutational studies showed that E122 may play a role in stabilizing the positively charged oxocarbenium ion and H121 for protonating N-3 of adenine. The tyrosine residues Y137 and Y104 may be used for stacking the target adenine ring. This work first shows a protein in the peptidase M35 superfamily based on conserved domain search possessing N-glycosidase activity.


Asunto(s)
Agaricales/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Inactivadoras de Ribosomas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Endorribonucleasas/metabolismo , Proteínas Fúngicas/metabolismo , Células HeLa , Células Hep G2 , Humanos , Unión Proteica/fisiología , ARN Ribosómico 28S/metabolismo , Ratas , Ricina/metabolismo
12.
J Am Chem Soc ; 143(42): 17566-17576, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34663067

RESUMEN

The ß2-adrenergic receptor (ß2AR) is a G-protein-coupled receptor (GPCR) that responds to the hormone adrenaline and is an important drug target in the context of respiratory diseases, including asthma. ß2AR function can be regulated by post-translational modifications such as phosphorylation and ubiquitination at the C-terminus, but access to the full-length ß2AR with well-defined and homogeneous modification patterns critical for biochemical and biophysical studies remains challenging. Here, we report a practical synthesis of differentially modified, full-length ß2AR based on a combined native chemical ligation (NCL) and sortase ligation strategy. An array of homogeneous samples of full-length ß2ARs with distinct modification patterns, including a full-length ß2AR bearing both monoubiquitination and octaphosphorylation modifications, were successfully prepared for the first time. Using these homogeneously modified full-length ß2AR receptors, we found that different phosphorylation patterns mediate different interactions with ß-arrestin1 as reflected in different agonist binding affinities. Our experiments also indicated that ubiquitination can further modulate interactions between ß2AR and ß-arrestin1. Access to full-length ß2AR with well-defined and homogeneous modification patterns at the C-terminus opens a door to further in-depth mechanistic studies into the structure and dynamics of ß2AR complexes with downstream transducer proteins, including G proteins, arrestins, and GPCR kinases.


Asunto(s)
Procesamiento Proteico-Postraduccional , Receptores Adrenérgicos beta 2/química , Regulación Alostérica , Aminoaciltransferasas/química , Proteínas Bacterianas/química , Cisteína Endopeptidasas/química , Humanos , Fosforilación , Receptores Adrenérgicos beta 2/metabolismo , Staphylococcus aureus/enzimología , Ubiquitinación , beta-Arrestina 1/metabolismo
13.
Sci Bull (Beijing) ; 66(15): 1542-1549, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-36654283

RESUMEN

A mirror-image protein-based information barcoding and storage technology wherein D-amino acids are used to encode information into mirror-image proteins that are chemically synthesized is described. These mirror-image proteins were then fused into various materials from which information-encoded objects were produced. Subsequently, the mirror-image proteins were extracted from the objects using biotin-streptavidin resin-mediated specific enrichment and cleaved using an Ni(II)-mediated selective peptide cleavage. Protein sequencing was accomplished using liquid chromatography/tandem mass spectrometry (LC-MS/MS) and then transcoded into the recorded information. We demonstrated the use of this technology to encode Chinese words into mirror-image proteins, which were then fused onto a poly(ethylene terephthalate) (PET) film and retrieved and decoded by LC-MS/MS sequencing. Compared to information barcoding and storage technologies using natural biopolymers, the mirror-image biopolymers used in our technology may be more stable and durable.


Asunto(s)
Proteínas , Espectrometría de Masas en Tándem , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Proteínas/química , Péptidos , Secuencia de Aminoácidos
14.
Front Cell Neurosci ; 13: 395, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31551713

RESUMEN

Neurodegeneration is the loss of structure and/or function of neurons. Oxidative stress has been suggested as one of the common etiology in most of the neurodegenerative diseases. Previous studies have demonstrated the beneficial effects of berberine in various neurodegenerative and neuropsychiatric disorders. In this study, we hypothesized that berberine could protect C17.2 neural stem cells (NSCs) from 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative damage then promote neuronal differentiation. AAPH was used to induce oxidative damage. After the damage, berberine protected C17.2 cells were kept cultured for another week in differentiation medium with/without berberine. Changes in cell morphology were detected by microscopy and cell viability was determined by MTT assay. Real-time PCR and western blot analysis were performed to confirm the associated pathways. Berberine was able to protect C17.2 NSCs from the oxidative damage. It lowered the cellular reactive oxygen species (ROS) level in C17.2 cells via Nuclear Factor Erythroid 2-Related Factor 1/2 (NRF1/2) - NAD(P)H Quinone Dehydrogenase 1 (NQO-1) - Heme Oxygenase 1 (HO-1) pathway. It also down-regulated the apoptotic factors-Caspase 3 and Bcl2 Associated X (Bax) and upregulated the anti-apoptotic factor-Bcl2 to reduce cell apoptosis. Besides, berberine increased C17.2 cell viability via up-regulating Extracellular-signal-Related Kinase (ERK) and phosphor-Extracellular-signal-Related Kinase (pERK) expression. Then, berberine promoted C17.2 cell to differentiate into neurons and the differentiation mechanism involved the activation of WNT/ß-catenin pathway as well as the upregulation of expression levels of pro-neural factors Achaete-Scute Complex-Like 1 (ASCL1), Neurogenin 1 (NeuroG1), Neuronal Differentiation 2 (NeuroD2) and Doublecortin (DCX). In conclusion, berberine protected C17.2 NSCs from oxidative damage then induced them to differentiate into neurons.

15.
Org Biomol Chem ; 17(23): 5698-5702, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31135013

RESUMEN

A new robust strategy was reported for the epimerization-free synthesis of C-terminal Cys-containing peptide acids through mercaptoethanol-mediated hydrolysis of peptide thioesters prepared in situ from peptide hydrazides. This simple-to-operate and highly efficient method avoids the use of derivatization reagents for resin modification, thus providing a practical avenue for the preparation of C-terminal Cys-containing peptide acids.


Asunto(s)
Ácidos/síntesis química , Cisteína/química , Péptidos/síntesis química , Secuencia de Aminoácidos , Péptidos/química , Conformación Proteica
16.
Opt Lett ; 43(19): 4759-4762, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30272733

RESUMEN

Photon bunching, a feature of classical thermal fields, has been widely exploited to implement ghost imaging. Here we show that spatial photon antibunching can be experimentally observed via low-pass filtering of the intensities of the two thermal light beams from a beamsplitter correlation system. Through suitable choice of the filter thresholds, the minimum of the measured normalized anti-correlation function, i.e., antibunching dip, can be lower than 0.2, while its full-width-at-half-maximum can be much narrower than that of the corresponding positive correlation peak. Based on this anti-correlation effect, a super-resolution negative ghost image is achieved in a lensless scheme, in which the spatial resolution can exceed the Rayleigh diffraction limit by more than a factor of two. The setup is quite simple and easy to implement, which is an advantage for practical applications.

17.
Toxins (Basel) ; 10(8)2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30127254

RESUMEN

Trichosanthin (TCS) is an RNA N-glycosidase that depurinates adenine-4324 in the conserved α-sarcin/ricin loop (α-SRL) of rat 28 S ribosomal RNA (rRNA). TCS has only one chain, and is classified as type 1 ribosome-inactivating protein (RIP). Our structural studies revealed that TCS consists of two domains, with five conserved catalytic residues Tyr70, Tyr111, Glu160, Arg163 and Phe192 at the active cleft formed between them. We also found that the structural requirements of TCS to interact with the ribosomal stalk protein P2 C-terminal tail. The structural analyses suggest TCS attacks ribosomes by first binding to the C-terminal domain of ribosomal P protein. TCS exhibits a broad spectrum of biological and pharmacological activities including anti-tumor, anti-virus, and immune regulatory activities. This review summarizes an updated knowledge in the structural and functional studies and the mechanism of its multiple pharmacological effects.


Asunto(s)
Antineoplásicos , Antivirales , Factores Inmunológicos , Tricosantina , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antivirales/química , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Factores Inmunológicos/química , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Conformación Proteica , Tricosantina/química , Tricosantina/farmacología , Tricosantina/uso terapéutico
18.
Sci Rep ; 7(1): 14368, 2017 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29085005

RESUMEN

This study aims to investigate the efficacy of bevacizumab-combined chemotherapy (BCC) in Chinese stage IV colorectal cancer (CRC), and analyze the relationship between clinicopathological features with survival. Patients with stage IV CRC treated with BCC were analyzed retrospectively. 217 metastatic CRC (mCRC) patients were collected, out of which79 were right-sided CRCs and 138 were left-sided ones. Patients with Eastern Cooperative Oncology Group (ECOG) performance status ≤2, single agent chemotherapy, poor/mucous/signet ring cell component, second-and further-line of bevacizumab administration, multiple metastasis sites had comparatively worse survival. Among 141 patients with known KRAS status, 55 patients harbored KRAS mutation and 86 had wild type KRAS. The ORR and DCR were 41.9% and 78.9%, respectively, in patients with wild type KRAS, while ORR and DCR was 38.7% and 77.9%, respectively, in patients with KRAS mutation. The median PFS of patients with wild type and mutant KRAS were 8.38, and9.59 months, respectively; whereas the OS was 23.00 and 21.26 months, respectively for mCRC patients with wild-type and mutant KRAS. Cumulatively, our study indicated that BCC was effective and beneficial for Chinese stage IV CRC patients. KRAS mutation status and tumor location were not a prognostic factor for survival.


Asunto(s)
Bevacizumab/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas Proto-Oncogénicas p21(ras)/genética , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Pueblo Asiatico , Bevacizumab/uso terapéutico , China , Neoplasias del Colon/tratamiento farmacológico , Neoplasias Colorrectales/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Pronóstico , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias del Recto/tratamiento farmacológico , Estudios Retrospectivos , Resultado del Tratamiento , Proteínas ras/genética
19.
Molecules ; 21(11)2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-27879643

RESUMEN

Ribosome-inactivating proteins (RIPs) including ricin, Shiga toxin, and trichosanthin, are RNA N-glycosidases that depurinate a specific adenine residue (A-4324 in rat 28S ribosomal RNA, rRNA) in the conserved α-sarcin/ricin loop (α-SRL) of rRNA. RIPs are grouped into three types according to the number of subunits and the organization of the precursor sequences. RIPs are two-domain proteins, with the active site located in the cleft between the N- and C-terminal domains. It has been found that the basic surface residues of the RIPs promote rapid and specific targeting to the ribosome and a number of RIPs have been shown to interact with the C-terminal regions of the P proteins of the ribosome. At present, the structural basis for the interaction of trichosanthin and ricin-A chain toward P2 peptide is known. This review surveys the structural features of the representative RIPs and discusses how they approach and interact with the ribosome.


Asunto(s)
Modelos Moleculares , Estructura Molecular , Proteínas Inactivadoras de Ribosomas/química , Ribosomas/química , Dominio Catalítico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Inactivadoras de Ribosomas/clasificación , Proteínas Inactivadoras de Ribosomas/metabolismo , Subunidades Ribosómicas/genética , Subunidades Ribosómicas/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
20.
Toxins (Basel) ; 8(10)2016 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-27754366

RESUMEN

Ricin is a type 2 ribosome-inactivating protein (RIP), containing a catalytic A chain and a lectin-like B chain. It inhibits protein synthesis by depurinating the N-glycosidic bond at α-sarcin/ricin loop (SRL) of the 28S rRNA, which thereby prevents the binding of elongation factors to the GTPase activation center of the ribosome. Here, we present the 1.6 Å crystal structure of Ricin A chain (RTA) complexed to the C-terminal peptide of the ribosomal stalk protein P2, which plays a crucial role in specific recognition of elongation factors and recruitment of eukaryote-specific RIPs to the ribosomes. Our structure reveals that the C-terminal GFGLFD motif of P2 peptide is inserted into a hydrophobic pocket of RTA, while the interaction assays demonstrate the structurally untraced SDDDM motif of P2 peptide contributes to the interaction with RTA. This interaction mode of RTA and P protein is in contrast to that with trichosanthin (TCS), Shiga-toxin (Stx) and the active form of maize RIP (MOD), implying the flexibility of the P2 peptide-RIP interaction, for the latter to gain access to ribosome.


Asunto(s)
Fosfoproteínas/química , Proteínas Ribosómicas/química , Ricina/química , Secuencia de Aminoácidos , Clonación Molecular , Escherichia coli/genética , Péptidos/química , Conformación Proteica , Ricina/genética , Toxina Shiga/química , Tricosantina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...