Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 659: 213-224, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38176231

RESUMEN

The effect of aggregation configuration of molecular fluorophore citrazinic acid (CZA) on the photoluminescence (PL) properties of carbon dots (CDs) has been investigated using first-principles method. The structural stability of all aggregates has been analyzed, and the results show that the most stable structures are J-type CZA aggregates with head-to-tail configurations and the CZA/CD aggregates are bonded by replacing H atoms on the CD edges with de-OH from the pyridine ring of CZA. The luminescent properties of CZA/CD aggregates are mainly affected by the binding modes and binding sites. When the sites belong to electron-donating groups, electron-withdrawing groups or sp2 domain, the PL spectra of CDs are shifted and the luminescent intensities are significantly enhanced. The results suggest that covalently bonded CZA/CD aggregates are responsible for the high fluorescence quantum yield of CD. Moreover, the distance between the centers of the two pyridine rings in H-type CZA dimers less than 3.5 Å is prone to π-π stacking, leading to fluorescence quenching of aggregates. The present work is helpful in understanding the effect of molecular fluorophores on the PL properties of CDs and provides theoretical guidance for the controllable synthesis of CDs.

2.
RSC Adv ; 13(40): 27714-27721, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37727316

RESUMEN

The influence of sp2- and sp3-hybridized carbon coexisting in carbon cores on fluorescence characteristics of carbon dots (CDs) was revealed by density functional theory calculations. Based on the constructed coronene-like structures, the fluorescence emission spectra, transition molecular orbital pairs and several physical quantities describing the distribution of electrons and holes were investigated. The results indicate that due to the interaction between sp2 and sp3 carbon atoms, two main factors including the hyperconjugative effect and the separation of sp2 domain by sp3 carbon atoms can regulate the fluorescence wavelength. By analyzing the transition molecular orbital pairs, it was found that the fluorescence wavelength has a close correlation with the conjugation length, suggesting that the conjugation length can predict the shift of the emission spectra of CDs. The theoretical results provide a comprehensive understanding of fluorescence mechanism and help to synthesize CDs with expected fluorescence wavelength.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...