Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38647185

RESUMEN

Thrombocythemia (ET), polycythemia vera (PV), primary myelofibrosis (PMF), prefibrotic/early (pre-PMF), and overt fibrotic PMF (overt PMF) are classical Philadelphia-Negative (Ph-negative) myeloproliferative neoplasms (MPNs). Differentiating between these types based on morphology and molecular markers is challenging. This study aims to clarify the application of flow cytometry in the diagnosis and differential diagnosis of classical MPNs. This study retrospectively analyzed the immunophenotypes, clinical characteristics, and laboratory findings of 211 Ph-negative MPN patients, including ET, PV, pre-PMF, overt PMF, and 47 controls. Compared to ET and PV, PMF differed in white blood cells, hemoglobin, blast cells in the peripheral blood, abnormal karyotype, and WT1 gene expression. PMF also differed from controls in CD34+ cells, granulocyte phenotype, monocyte phenotype, percentage of plasma cells, and dendritic cells. Notably, the PMF group had a significantly lower plasma cell percentage compared with other groups. A lasso and random forest model select five variables (CD34+CD19+cells and CD34+CD38- cells on CD34+cells, CD13dim+CD11b- cells in granulocytes, CD38str+CD19+/-plasma, and CD123+HLA-DR-basophils), which identify PMF with a sensitivity and specificity of 90%. Simultaneously, a classification and regression tree model was constructed using the percentage of CD34+CD38- on CD34+ cells and platelet counts to distinguish between ET and pre-PMF, with accuracies of 94.3% and 83.9%, respectively. Flow immunophenotyping aids in diagnosing PMF and differentiating between ET and PV. It also helps distinguish pre-PMF from ET and guides treatment decisions.

2.
ACS Nano ; 18(9): 6963-6974, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38378186

RESUMEN

Microdialysis (MD) is a versatile and powerful technique for chemical profiling of biological tissues and is widely used for quantification of neurotransmitters, neuropeptides, metabolites, biomarkers, and drugs in the central nervous system as well as in dermatology, ophthalmology, and pain research. However, MD performance is severely limited by fundamental tradeoffs between chemical sensitivity, spatial resolution, and temporal response. Here, by using wafer-scale silicon microfabrication, we develop and demonstrate a nanodialysis (ND) sampling probe that enables highly localized chemical sampling with 100 µm spatial resolution and subsecond temporal resolution at high recovery rates. These performance metrics, which are 100-1000× superior to existing MD approaches, are enabled by a 100× reduction of the microfluidic channel cross-section, a corresponding drastic 100× reduction of flow rates to exceedingly slow few nL/min flows, and integration of a nanometer-thin nanoporous membrane with high transport flux into the probe sampling area. Miniaturized ND probes may allow for the minimally invasive and highly localized sampling and chemical profiling in live biological tissues with high spatiotemporal resolution for clinical, biomedical, and pharmaceutical applications.


Asunto(s)
Neurotransmisores , Silicio , Microtecnología , Microfluídica , Sistema Nervioso Central
3.
Microorganisms ; 11(10)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37894119

RESUMEN

(1) Epidemiological studies have shown that deciduous molar caries are related to and more severe than permanent molar caries. This study aimed to investigate whether caries subtypes in deciduous molars were associated with caries in first permanent molars and to explore taxonomic and functional profiles of the microbiota involved in different subtypes. (2) 42 mixed-dentition children were recruited and were divided into DMC (carious deciduous molars but caries-free first permanent molars; n = 14), C (carious deciduous and first permanent molars; n = 13), and control (n = 15) groups. Metagenomic sequencing was performed for supragingival plaque samples obtained separately from deciduous and first permanent molars. (3) The microbiota of deciduous molars in the DMC and C groups differed not only in species-based beta diversity but also in compositional and functional profiles. In the C group-like subtype, 14 caries-related species and potential pathways were identified that could be responsible for the caries relationship between the deciduous and permanent molars. In the DMC group-like subtype, the overall functional structure, the levels of Leptotrichia wadei, Streptococcus anginosus, and Stomatobaculum longum and KOs in sugar transporters and fermentation, quorum sensing, and TCA cycle in their first permanent molars surprisingly resembled those of the C group rather than the control group. This suggested that these clinically sound first permanent molars were at a greater risk for caries. (4) Classification of deciduous molar caries according to the microbiota could serve as a caries risk predictor for adjacent first permanent molars.

4.
bioRxiv ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37745310

RESUMEN

Microdialysis (MD) is a versatile and powerful technique for chemical profiling of biological tissues and is widely used for quantification of neurotransmitters, neuropeptides, metabolites, biomarkers, and drugs in the central nervous system as well as in dermatology, ophthalmology, and in pain research. However, MD performance is severely limited by fundamental tradeoffs between chemical sensitivity, spatial resolution, and temporal response. Here, by using wafer-scale silicon microfabrication, we develop and demonstrate a nanodialysis (ND) sampling probe that enables highly localized chemical sampling with 100µm spatial resolution and sub-second temporal resolution at high recovery rates. These performance metrics, which are 100X-1000X superior to existing MD approaches, are enabled by a 100X reduction of the microfluidic channel cross-section, a corresponding drastic 100X reduction of flow rates to exceedingly slow few nL/min flows, and integration of a nanometer-thin nanoporous membrane with high transport flux into the probe sampling area. Miniaturized ND probes may allow for the minimally invasive and highly localized sampling and chemical profiling in live biological tissues with unprecedented spatio-temporal resolution for clinical, biomedical, and pharmaceutical applications.

5.
Front Cardiovasc Med ; 10: 1082015, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396579

RESUMEN

Background and aims: inflammation plays an important role in atrial fibrillation (AF). In this study, we investigated the significance of immune cell infiltration in AF and identified the potential Hub genes involved in the regulation of immune cell infiltration in AF. Methods: we obtained AF datasets from the GEO database and analyzed them for obtaining differentially expressed genes (DEGs) by R software. Then, we performed GO, KEGG, and GSEA enrichment analyses of DEGs. The Hub genes of AF were determined by least absolute shrinkage selection operator (LASSO) regression analysis and weighted gene co-expression network analysis (WGCNA). Their validation was verified by using quantitative polymerase chain reaction (qPCR) in the AF rat model. Finally, we used a single sample GSEA (ssGSEA) to analyze immune cell infiltration and its relationship with hub genes. Results: We obtained 298 DGEs from the heatmap and found that DGEs were closely related to inflammation, immunity, and cytokine interactions by enrichment analyses. We obtained 10 co-expression modules by WGCNA. Among them, the module including CLEC4A, COTL1, EVI2B, FCER1G, GAPT, HCST, NCF2, PILRA, TLR8, and TYROBP had the highest correlation with AF. Four Hub genes (PILRA, NCF2, EVI2B, GAPT) were obtained further by LASSO analysis. The results suggested that the expression level of PILRA was significantly elevated in the rats with AF by qPCR, compared to the rats without AF. The results revealed that the infiltration of neutrophils, macrophages, monocytes, mast cells, immature B cells, myeloid-derived suppressor cell (MDSC), dendritic cell, and T cells and their partial subpopulations were closely related to AF by ssGSEA analysis, and PILRA was positively correlated with immature B cell, monocyte, macrophage, mast cell, dendritic cell, and T cells and their partial subpopulations by Spearman correlation analysis. Conclusions: PILRA was closely related to multiple types of immune cell infiltration, which may be associated with AF. PILRA may be a novel target of intervention for AF.

7.
Sens Actuators B Chem ; 3852023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37214161

RESUMEN

Implantable electrochemical sensors enable fast and sensitive detection of analytes in biological tissue, but are hampered by bio-foulant attack and are unable to be recalibrated in-situ. Herein, an electrochemical sensor integrated into ultra-low flow (nL/min) silicon microfluidic channels for protection from foulants and in-situ calibration is demonstrated. The small footprint (5 µm radius channel cross-section) of the device allows its integration into implantable sampling probes for monitoring chemical concentrations in biological tissues. The device is designed for fast scan cyclic voltammetry (FSCV) in the thin-layer regime when analyte depletion at the electrode is efficiently compensated by microfluidic flow. A 3X enhancement of faradaic peak currents is observed due to the increased flux of analytes towards the electrodes. Numerical analysis of in-channel analyte concentration confirmed near complete electrolysis in the thin-layer regime below 10 nL/min. The manufacturing approach is highly scalable and reproducible as it utilizes standard silicon microfabrication technologies.

8.
Appl Opt ; 62(5): 1303-1312, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36821231

RESUMEN

We propose a novel, to the best of our knowledge, 1×5 broadband power splitter based on the photonic crystal. The Powell algorithm is used to reverse-design the proposed broadband power splitter. The results show that the transmittance of each output port of the broadband photonic crystal power splitter can be adjusted by changing the radii and offsets of the dielectric rods at the junction area of each waveguide. According to the target splitting ratio, the reverse design of the structural parameters using the Powell algorithm significantly improves the optimization efficiency and splitting performance of the broadband power splitter. The designed power splitters have a wide working bandwidth of 1525-1565 nm, a flexible and designable power splitting ratio, excellent splitting performance, and a compact size, which have great application prospects in all-optical communication networks, high-density photon integration, and other fields.

9.
Lab Chip ; 23(1): 72-80, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36477760

RESUMEN

A silicon single-chip microfluidics system that integrates microscale fluidic channels, an analyte segmentation device, and a nozzle for electrohydrodynamic-assisted printing is designed for hyphenation with MALDI mass spectrometry (MS) imaging. A miniaturized T-junction segments analytes into monodisperse picoliter oil-isolated compartments. The printing nozzle deposits generated droplets one-by-one into an array on a conductive substrate without splitting or coalescing. Virtually single-shot MS analysis is enabled due to the ultrasmall droplet volumes and highly localized printing. The signal-to-noise ratio indicates that detection limits at the attomole level are achieved for γ-aminobutyric acid.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Silicio , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Impresión
10.
Anal Chem ; 94(40): 13804-13809, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36166829

RESUMEN

While droplet microfluidics is becoming an effective tool for biomedical research, sensitive detection of droplet content is still challenging, especially for multiplexed analytes compartmentalized within ultrasmall droplets down to picoliter volumes. To enable such measurements, we demonstrate a silicon-based integrated microfluidic platform for multiplexed analysis of neurochemicals in picoliter droplets via nanoelectrospray ionization (nESI)-mass spectrometry (MS). An integrated silicon microfluidic chip comprising downscaled 7 µm-radius channels, a compact T-junction for droplet generation, and an integrated nESI emitter tip is used for segmentation of analytes into picoliter compartments and their efficient delivery for subsequent MS detection. The developed system demonstrates effective detection of multiple neurochemicals encapsulated within oil-isolated plugs down to low picoliter volumes. Quantitative measurements for each neurochemical demonstrate limits of detection at the attomole level. Such results are promising for applications involving label-free and small-volume detection for monitoring a range of brain chemicals.


Asunto(s)
Técnicas Analíticas Microfluídicas , Silicio , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos
11.
Cytometry B Clin Cytom ; 102(5): 360-369, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35735203

RESUMEN

BACKGROUND: ZNF384 rearrangement has been recently identified as a new subtype of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, comprehensive studies clarifying immunophenotypic features and discriminating them from non-ZNF384 in adult BCP-ALL remain scarce to date. METHODS: Flow cytometric assessments were retrospectively performed in 43 patients with ZNF384 rearrangement, 45 with BCR-ABL1, 29 with KMT2A rearrangement and 44 with other BCP-ALL in the analysis cohort. RESULTS: CD33- and CD13-positive frequencies were significantly higher in patients with ZNF384 rearrangement than in those with non-ZNF384; however, no significant difference was observed in CD10- and CD123-positive frequencies. Analysis of antigen-positive cell proportion and median fluorescence intensity (MFI) further indicated that patients with ZNF384 rearrangement had significantly lower CD10 and higher CD33, CD13, and CD123 proportion and MFI. However, compared with KMT2A rearrangement, the CD10 expression in patients with ZNF384 rearrangement was higher, with the median percentage and MFI of 36.16 (3.63-94.79)% versus 4.53 (0.03-21.00)%, and 4.50 (0.86-32.26) versus 2.06 (0.87-4.04), respectively (p < 0.0001). Furthermore, compared with BCR-ABL1 and other BCP-ALL, ZNF384 rearrangement had significantly higher CD33 and CD13 proportion and MFI (p < 0.0001 and p < 0.05, respectively). In addition, higher CD123 proportion and MFI in ZNF384 rearrangement than those in the other three groups were reported for the first time (p < 0.01). A flow cytometry scoring system, including CD10%, CD33MFI, CD13%, and CD123MFI, was proposed and verified to predict ZNF384 rearrangement with high sensitivity and specificity, that is, 76.74% and 91.53% in the analysis and 87.50% and 91.30% in the validation cohort. CONCLUSIONS: The multiparameter immunophenotypic scoring system could suggest ZNF384 rearrangement.


Asunto(s)
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Aberraciones Cromosómicas , Citometría de Flujo , Humanos , Inmunofenotipificación , Subunidad alfa del Receptor de Interleucina-3 , Neprilisina , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Estudios Retrospectivos , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética
12.
J Cheminform ; 14(1): 19, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365231

RESUMEN

Chemical space exploration is a major task of the hit-finding process during the pursuit of novel chemical entities. Compared with other screening technologies, computational de novo design has become a popular approach to overcome the limitation of current chemical libraries. Here, we reported a de novo design platform named systemic evolutionary chemical space explorer (SECSE). The platform was conceptually inspired by fragment-based drug design, that miniaturized a "lego-building" process within the pocket of a certain target. The key to virtual hits generation was then turned into a computational search problem. To enhance search and optimization, human intelligence and deep learning were integrated. Application of SECSE against phosphoglycerate dehydrogenase (PHGDH), proved its potential in finding novel and diverse small molecules that are attractive starting points for further validation. This platform is open-sourced and the code is available at http://github.com/KeenThera/SECSE.

13.
J Oral Microbiol ; 14(1): 2051352, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309409

RESUMEN

Introduction: Oral microbiota that established in the early years of life may influence the child's oral health in the long term. Until now, no consensus is reached about whether the development of the oral microbiota is more related with age increase or more with teeth eruption. Objective: To analyze the microbiota development of both saliva and supragingival plaque during the gradual eruption of primary teeth in caries-free infants and toddlers. Methods: Saliva and plaque samples were collected at five and four dentition states, respectively, and were identified by bacterial 16S rRNA gene sequencing. Results: During the longitudinal observation, the saliva ecosystem seemed more complex and dynamic than the plaque, with larger bacteria quantity and more significantly varied species over time. About 70% of the initial colonized OTUs in plaque persisted until the completion of the primary dentition. Transient bacteria were mostly detected in the early saliva and plaque microbiota, which came from the environment and other sites of the human body. Microbial diversity in both saliva and plaque varied greatly from pre-dentition to full eruption of eight anterior teeth, but not during the eruption of primary molars. Conclusion: Oral bacterial development follows an ordered sequence during the primary teeth eruption. 'Fully eruption of all primary anterior teeth' is a critical stage in this process.

14.
Virol J ; 19(1): 57, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35346253

RESUMEN

BACKGROUND: Abnormalities of lymphocyte subsets and cytokine profiles have been observed in most patients with coronavirus disease (COVID-19). Here, we explore the role of lymphocyte subsets and cytokines on hospital admission in predicting the severity of COVID-19. METHODS: This study included 214 patients with COVID-19 who were treated at Chongqing University Three Gorges Hospital from January 19, 2020 to April 30, 2020. Any mutants were not detected in the studied patients. Patients were divided into non-intensive care unit (ICU) (mild/moderate) group and ICU (severe/critical) group, according to the severity of the disease. Clinical and laboratory data, including peripheral lymphocyte subsets and cytokines, were analyzed and compared. Logistic regression was used to analyze the predictive factors for ICU admission. Receiver operating characteristic (ROC) curves were drawn to evaluate the predictive value of selected indicators for the severity of COVID-19. RESULTS: Of the 214 patients enrolled, 161 were non-ICU patients and 53 were ICU patients. Lymphopenia was observed in nearly all of ICU patients (96.2%) and 84.5% of non-ICU patients on hospital admission. The absolute number of lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and natural killer (NK) cells were lower in ICU group (659.00 × 106/L, 417.00 × 106/L, 261.00 × 106/L, 140.00 × 106/L, 109.00 × 106/L, 102.00 × 106/L, respectively) than in non-ICU group (1063.00 × 109/L, 717.00 × 106/L, 432.00 × 106/L, 271.00 × 106/L, 133.00 × 106/L, 143.00 × 106/L, respectively). Interleukin (IL)-6 was significantly higher in ICU patients than in non-ICU patients (18.08 pg/mL vs. 3.13 pg/mL, P < 0.001). Multivariate logistic regression analysis showed that age (odds ratio: 1.067 [1.034-1.101]), diabetes mellitus (odds ratio: 9.154 [2.710-30.926]), CD3+ T cells (odds ratio: 0.996 [0.994-0.997]), and IL-6 (odds ratio: 1.006 [1.000-1.013]) were independent predictors for the development of severe disease. ROC curve analysis showed that the area under the ROC curve (AUC) of CD3+ T cells and IL-6 was 0.806 (0.737-0.874) and 0.785 (0.705-0.864), respectively, and the cutoff values were 510.50 × 106/L (sensitivity, 71.7%; specificity, 79.5%) and 6.58 pg/mL (77.4%, 74.5%), respectively. There were no statistical differences among all tested indicators of lymphocyte subsets and cytokines between severe group (n = 38) and critical group (n = 15) on hospital admission or ICU admission, respectively. CONCLUSIONS: The levels of lymphocyte subsets decreased and the level of IL-6 increased significantly in ICU COVID-19 patients compared with non-ICU COVID-19 patients. Therefore, the number of CD3+ T cells and the level of IL-6 on hospital admission may serve as predictive factors for identifying patients with wild-type virus infection who will have severe disease.


Asunto(s)
Linfocitos T CD8-positivos , COVID-19 , Humanos , Interleucina-6 , Células Asesinas Naturales , Subgrupos Linfocitarios , Pronóstico
15.
Behav Brain Res ; 416: 113535, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34416301

RESUMEN

Reboxetine, the first selective norepinephrine (NA) reuptake inhibitor used in the treatment of depression, mainly acts by binding to the NA transporter and blocking reuptake of extracellular NA. Recently, some other pharmacological targets beyond the NA transporter are being demonstrated for reboxetine. Peroxisome proliferator activated receptor α (PPARα) is a member of the nuclear hormone receptor family of ligand-dependent transcription factors. Previous reports have demonstrated the role of hippocampal PPARα in the pathophysiology of depression. Here we assume that hippocampal PPARα may participate in the antidepressant mechanism of reboxetine. Therefore, the chronic social defeat stress (CSDS) model of depression, various behavioral tests, the western blotting and adenovirus associated virus (AAV)-mediated genetic knockdown methods were used together in the present study. Our results showed that repeated reboxetine treatment markedly restored the decreasing effects of CSDS on the expression of hippocampal PPARα, brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP response element binding protein (pCREB). Pharmacological blockade of PPARα notably prevented the antidepressant-like effects of reboxetine in the CSDS model. Furthermore, genetic knockdown of hippocampal PPARα also fully abolished the antidepressant-like effects of reboxetine in the CSDS model. Taken together, promoting the hippocampal PPARα expression participates in the antidepressant mechanism of reboxetine.


Asunto(s)
Inhibidores de Captación Adrenérgica/farmacología , Depresión/tratamiento farmacológico , Hipocampo/metabolismo , PPAR alfa/metabolismo , Reboxetina/farmacología , Animales , Conducta Animal/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL
16.
Lab Chip ; 22(1): 40-46, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34897344

RESUMEN

We report a silicon microfluidic platform that enables monolithic integration of transparent micron-scale microfluidic channels, an on-chip segmentation of analyte flows into picoliter-volume droplets, and a nano-electrospray ionization emitter that enables spatial and temporal separation of oil and aqueous phases during electro-spray for subsequent mass spectrometry analysis.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Silicio , Espectrometría de Masa por Ionización de Electrospray
17.
Mamm Genome ; 32(6): 517-529, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34632534

RESUMEN

Researches indicate that circular RNAs are dysregulated in breast cancer (BC) and play a critical role in regulating the malignant phenotype of cancer cells. Herein, the goal of this work was to investigate the role and mechanism of circ_0069718 in BC development. Levels of genes and proteins were detected by quantitative real-time polymerase chain reaction and western blot. In vitro experiments were performed using cell counting kit-8 assay, colony formation assay, EdU (5-ethynyl-2'-deoxyuridine) assay, flow cytometry, western blot, and transwell assay, respectively. The dual-luciferase reporter and RNA immunoprecipitation assays were used to identify the target relationship between miR-590-5p and circ_0069718 or nuclear factor I/B (NFIB). In vivo experiments were conducted using Xenograft model in mice. Circ_0069718 was up-regulated in BC tissues and cells. Knockdown of circ_0069718 suppressed BC cell apoptosis, migration, and invasion in vitro effectively. Mechanistically, circ_0069718 directly targeted miR-590-5p to up-regulate its target NFIB. Rescue experiments showed that miR-590-5p inhibition reversed the inhibitory effects of circ_0069718 knockdown on BC cell-aggressive oncogenic phenotypes; moreover, miR-590-5p re-expression restrained BC cell proliferation and mobility, which were abolished by NFIB up-regulation. Besides that, circ_0069718 silencing hindered tumor growth via miR-590-5p/NFIB axis in vivo. Circ_0069718 promotes BC progression by up-regulating NFIB through sequestering miR-590-5p, suggesting a potential therapeutic strategy in BC.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Factores de Transcripción NFI , Animales , Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Xenoinjertos , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción NFI/genética , ARN Circular/genética , Regulación hacia Arriba
18.
Front Cell Infect Microbiol ; 11: 724142, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35155268

RESUMEN

Tonsillar hypertrophy is a common disease in 3-to-6-year-old children, which may cause serve symptoms like airway obstruction. Microbiological factors play an important role in the etiology of tonsillar hypertrophy. As the starting point of digestive and respiratory tracts, the microbial composition of the oral cavity is not only unique but also closely related to the resident microbiota in other body sites. Here we reported a correlation study of the microbiota between oral cavity and tonsils in children with tonsillar hypertrophy. Saliva, supragingival plaque, and wiped samples from the tonsil surface were collected from both tonsillar hypertrophy patients and participants with healthy tonsils and were then analyzed using Illumina Miseq Sequencing of the 16S rRNA gene. In the tonsillar hypertrophic state, more genera were detected on the tonsil surface than in the tonsil parenchyma, with more intra-microbiota correlations. When tonsillar hypertrophy occurred, both the oral cavity and tonsil surface endured microbiome shift with increased genera category and more active bacterial interactions. Over half of the newly detected genera from the tonsillar hypertrophic state were associated with infection and inflammation process or exhibited antibiotic-resistant characters. Of each individual, the microbial composition and structure of saliva seemed more similar to that of the tonsil surface, compared with the supragingival plaque. In salivary microbiota, genus Johnsonella might be relative with the healthy state of tonsils, while Pseudoxanthomonas might be relative with tonsillar hypertrophy. Our study supported the link between oral microbiota with the healthy and hypertrophic states of tonsils and may provide new directions for future researches in the specific role of oral microbiota in the etiology of tonsil diseases.


Asunto(s)
Microbiota , Tonsila Palatina , Niño , Correlación de Datos , Humanos , Hipertrofia , Microbiota/genética , Boca , Tonsila Palatina/microbiología , ARN Ribosómico 16S/genética
19.
J Oral Microbiol ; 12(1): 1782696, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32944149

RESUMEN

BACKGROUND: Severe early childhood caries (S-ECC) is mainly caused by the interaction of microbiota and environmental factors. However, the metabolic profiles of S-ECC microbial communities and the community-level microbial responses to carbohydrates and amino acids are poorly understood. METHODS: We collected supragingival plaques from 15 caries-free (CF) and 14 S-ECC children. Cultivation on Biolog AN microplates together with next-generation sequencing was used to analyze sole carbon source utilization patterns and microbial responses to sucrose, lactose and phenylalanine. RESULTS: S-ECC plaques had greater overall metabolic activity than those of CF ones. Comparing with CF, S-ECC plaques utilized more sucrose and lactose but less phenylalanine and then had greater response to carbohydrates. A remarkable increase of non-mutans Streptococci was observed in sucrose and lactose consumption. Lactose led to less differently distributed taxa than sucrose in both CF and S-ECC groups. Sucrose made the originally different S-ECC and CF communities eventually became similar to each other, but they remained dissimilar in lactose. CONCLUSION: S-ECC plaques had more active interaction with cariogenic carbohydrates like sucrose and lactose than healthy plaques. We supported lactose has less cariogenicity compared with sucrose from microbial community structural aspect. Phenylalanine may have a potentially inhibitory effect on caries development.

20.
Front Microbiol ; 11: 458, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265883

RESUMEN

Increasing lines of evidence indicate that while microbial profile might vary, community-level metabolic potential is often more stably correlated with healthy and diseased states. Here, we investigated the community-level metabolic diversity of dental plaque microbiota from caries-free (CF) and caries-affected (CA) children by measuring their sole carbon source utilization using a Biolog assay. The dietary habits of 32 CF and 31 CA children were recorded by a questionnaire. Supragingival plaque samples were collected and inoculated into Biolog AN Microplates to assess the metabolism of sole carbon sources by plaque bacteria. The results revealed significant differences in dietary habits between CF and CA children. Meanwhile, Biolog assay showed consistently higher, albeit not statistically significant, overall metabolic activity as measured by average well color development (AWCD) value in the plaque microbiota from CA group than CF group. Most importantly, the CA group had more than twice as many core-positive carbon sources (defined as being utilized by >90% of plaque microbiota from subjects within the group) as that of the CF group (31 vs. 14), including CA group-specific, cariogenic core-positive carbon sources such as sucrose, glucose and raffinose. Furthermore, CF and CA groups could be well distinguished by cluster and principle component analyses based on the types of sole carbon sources significantly differentially utilized by the two groups. Our results indicate that plaque communities associated with caries state are more metabolically versatile than those associated with healthy state, which could contribute to differential clinical caries states. Meanwhile, Biolog could be an effective tool in revealing the community-level physiological profiles of microbiota associated with different caries states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...