Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 31(Pt 4): 751-762, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38904936

RESUMEN

A cavity-based X-ray free-electron laser (CBXFEL) is a possible future direction in the development of fully coherent X-ray sources. CBXFELs consist of a low-emittance electron source, a magnet system with several undulators and chicanes, and an X-ray cavity. The X-ray cavity stores and circulates X-ray pulses for repeated FEL interactions with electron pulses until the FEL reaches saturation. CBXFEL cavities require low-loss wavefront-preserving optical components: near-100%-reflectivity X-ray diamond Bragg-reflecting crystals, outcoupling devices such as thin diamond membranes or X-ray gratings, and aberration-free focusing elements. In the framework of the collaborative CBXFEL research and development project of Argonne National Laboratory, SLAC National Accelerator Laboratory and SPring-8, we report here the design, manufacturing and characterization of X-ray optical components for the CBXFEL cavity, which include high-reflectivity diamond crystal mirrors, a diamond drumhead crystal with thin membranes, beryllium refractive lenses and channel-cut Si monochromators. All the designed optical components have been fully characterized at the Advanced Photon Source to demonstrate their suitability for the CBXFEL cavity application.

2.
Pestic Biochem Physiol ; 200: 105807, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582579

RESUMEN

Recently, nanotechnology is among the most promising technologies used in all areas of research. The production of metal nanoparticles using plant parts has received significant attention for its environmental friendliness and effectiveness. Therefore, we investigated the possible applications of biological synthesized nickel oxide nanoparticles (NiONPs). In this study, NiONPs were synthesized through biological method using an aqueous extract of saffron stigmas (Crocus sativus L). The structure, morphology, purity, and physicochemical properties of the obtained NPs were confirmed through Scanning/Transmission Electron Microscopy attached with Energy Dispersive Spectrum, X-ray Diffraction, and Fourier transform infrared. The spherically shaped NiONPs were found by Debye Scherer's formula to have a mean dimension of 41.19 nm. The application of NiONPs in vitro at 50, 100, and 200 µg/mL, respectively, produced a clear region of 2.0, 2.2, and 2.5 cm. Treatment of Xoo cell with NiONPs reduced the growth and biofilm formation, respectively, by 88.68% and 83.69% at 200 µg/mL. Adding 200 µg/mL NiONPs into Xoo cells produced a significant amount of ROS in comparison with the control. Bacterial apoptosis increased dramatically from 1.05% (control) to 99.80% (200 µg/mL NiONPs). When compared to the control, rice plants treated with 200 µg/mL NiONPs significantly improved growth characteristics and biomass. Interestingly, the proportion of diseased leaf area in infected plants with Xoo treated with NiONPs reduced to 22% from 74% in diseased plants. Taken together, NiONPs demonstrates its effectiveness as a promising tool as a nano-bactericide in managing bacterial infection caused by Xoo.


Asunto(s)
Nanopartículas del Metal , Níquel , Oryza , Xanthomonas , Oryza/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
3.
J Synchrotron Radiat ; 31(Pt 3): 508-516, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38530832

RESUMEN

Coherent X-ray imaging is an active field at synchrotron sources. The images rely on the available coherent flux over a limited field of view. At many synchrotron beamlines a double-crystal monochromator (DCM) is employed in a standard nondispersive arrangement. For coherent diffraction imaging it is advantageous to increase the available field of view by increasing the spatial coherence length (SCL) of a beam exiting such a DCM. Here, Talbot interferometry data together with ray-tracing simulations for a (+ - - +) four-reflection experimental arrangement are presented, wherein the first two reflections are in the DCM and the final fourth reflection is asymmetric at grazing exit. Analyses of the interferometry data combined with the simulations show that compared with the beam exiting the DCM a gain of 76% in the SCL was achieved, albeit with a factor of 20 reduction in flux density, which may not be a severe penalty at a synchrotron beamline. Previous efforts reported in the literature to increase the SCL that employed asymmetric crystal diffraction at grazing incidence are also discussed. A much reduced SCL is found presently in simulations wherein the same asymmetric crystal is set for grazing incidence instead of grazing exit. In addition, the present study is compared and contrasted with two other means of increasing the SCL. These are (i) focusing the beam onto an aperture to act as a secondary source, and (ii) allowing the beam to propagate in vacuum an additional distance along the beamline.

4.
Opt Express ; 31(24): 39514-39527, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38041271

RESUMEN

We describe the application of an AI-driven system to autonomously align complex x-ray-focusing mirror systems, including mirrors systems with variable focus spot sizes. The system has been developed and studied on a digital twin of nanofocusing X-ray beamlines, built using advanced optical simulation tools calibrated with wavefront sensing data collected at the beamline.We experimentally demonstrated that the system is reliably capable of positioning a focused beam on the sample, both by simulating the variation of a beamline with random perturbations due to typical changes in the light source and optical elements over time, and by conducting similar tests on an actual focusing mirror system.

5.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38117200

RESUMEN

Next-generation synchrotron radiation facilities, such as the Advanced Photon Source Upgrade (APS-U), bring significant advancements in scientific research capabilities, necessitating advanced diagnostic tools. Central to these diagnostics are x-ray wavefront sensors, crucial for preserving beam properties, including brightness, coherence, and stability. This paper presents two novel wavefront sensor prototypes developed at the APS using the coded-mask-based technique. The first is a compact design tailored for specific conditions and adaptability to diverse beamline configurations. The second, an adjustable zoom version, offers flexibility to accommodate a wide range of beam conditions. Both prototypes underwent rigorous testing at the APS 28-ID-B beamline and demonstrated their effectiveness in both absolute wavefront sensing and relative metrology modes. These results highlight their promise in beamline diagnostics, potentially enabling applications such as beamline auto-alignment and real-time wavefront manipulation.

6.
J Synchrotron Radiat ; 30(Pt 6): 1100-1107, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37815375

RESUMEN

The advent of next-generation synchrotron radiation sources and X-ray free-electron lasers calls for high-quality Bragg-diffraction crystal optics to preserve the X-ray beam coherence and wavefront. This requirement brings new challenges in characterizing crystals in Bragg diffraction in terms of Bragg-plane height errors and wavefront phase distortions. Here, a quantitative methodology to characterize crystal optics using a state-of-the-art at-wavelength wavefront sensing technique and statistical analysis is proposed. The method was tested at the 1-BM-B optics testing beamline at the Advanced Photon Source for measuring silicon and diamond crystals in a self-referencing single-crystal mode and an absolute double-crystal mode. The phase error sensitivity of the technique is demonstrated to be at the λ/100 level required by most applications, such as the characterization of diamond crystals for cavity-based X-ray free-electron lasers.

7.
J Synchrotron Radiat ; 30(Pt 5): 902-909, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37610344

RESUMEN

The mutual optical intensity (MOI) model is a partially coherent radiation propagation tool that can sequentially simulate beamline optics and provide beam intensity, local degree of coherence and phase distribution at any location along a beamline. This paper extends the MOI model to non-ideal two-dimensional (2D) optical systems, such as ellipsoidal and toroidal mirrors with 2D figure errors. Simulation results show that one can tune the trade-off between calculation efficiency and accuracy by varying the number of wavefront elements. The focal spot size of an ellipsoidal mirror calculated with 100 × 100 elements gives less than 0.4% deviation from that with 250 × 250 elements, and the computation speed is nearly two orders of magnitude faster. Effects of figure errors on 2D focusing are also demonstrated for a non-ideal ellipsoidal mirror and by comparing the toroidal and ellipsoidal mirrors. Finally, the MOI model is benchmarked against the multi-electron Synchrotron Radiation Workshop (SRW) code showing the model's high accuracy.

8.
Opt Express ; 31(13): 21264-21279, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37381230

RESUMEN

A neural-network machine learning model is developed to control a bimorph adaptive mirror to achieve and preserve aberration-free coherent X-ray wavefronts at synchrotron radiation and free electron laser beamlines. The controller is trained on a mirror actuator response directly measured at a beamline with a real-time single-shot wavefront sensor, which uses a coded mask and wavelet-transform analysis. The system has been successfully tested on a bimorph deformable mirror at the 28-ID IDEA beamline of the Advanced Photon Source at Argonne National Laboratory. It achieved a response time of a few seconds and maintained desired wavefront shapes (e.g., a spherical wavefront) with sub-wavelength accuracy at 20 keV of X-ray energy. This result is significantly better than what can be obtained using a linear model of the mirror's response. The developed system has not been tailored to a specific mirror and can be applied, in principle, to different kinds of bending mechanisms and actuators.

9.
Opt Express ; 31(2): 2977-2988, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785299

RESUMEN

In a full-field transmission X-ray microscopy (TXM) setup, a condenser X-ray optical element is used to illuminate the sample by condensing the X-ray beam delivered by the synchrotron storage ring. On-going and future upgrades of synchrotron facilities to diffraction-limited storage rings will pose new challenges to these TXM setups, such as much smaller X-ray beams on the condenser. Here, we demonstrate that a refractive axicon can be used as an X-ray beam shaper to match the ring-shaped aperture of the condenser. Aiming at more efficient use of the incoming X-ray intensity, we explore several axicon designs both analytically and with numerical simulations. The axicons were produced by two-photon polymerization 3D printing on thin silicon nitride membrane substrates. The first characterization of the axicon was carried out at the TOMCAT beamline of the Swiss Light Source (Switzerland).

10.
J Synchrotron Radiat ; 30(Pt 1): 57-64, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36601926

RESUMEN

Adaptive X-ray mirrors are being adopted on high-coherent-flux synchrotron and X-ray free-electron laser beamlines where dynamic phase control and aberration compensation are necessary to preserve wavefront quality from source to sample, yet challenging to achieve. Additional difficulties arise from the inability to continuously probe the wavefront in this context, which demands methods of control that require little to no feedback. In this work, a data-driven approach to the control of adaptive X-ray optics with piezo-bimorph actuators is demonstrated. This approach approximates the non-linear system dynamics with a discrete-time model using random mirror shapes and interferometric measurements as training data. For mirrors of this type, prior states and voltage inputs affect the shape-change trajectory, and therefore must be included in the model. Without the need for assumed physical models of the mirror's behavior, the generality of the neural network structure accommodates drift, creep and hysteresis, and enables a control algorithm that achieves shape control and stability below 2 nm RMS. Using a prototype mirror and ex situ metrology, it is shown that the accuracy of our trained model enables open-loop shape control across a diverse set of states and that the control algorithm achieves shape error magnitudes that fall within diffraction-limited performance.

11.
Sci Rep ; 12(1): 18267, 2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309543

RESUMEN

The advent of low-emittance synchrotron X-ray sources and free-electron lasers urges the development of novel diagnostic techniques for measuring and monitoring the spatial source properties, especially the source sizes. This work introduces an X-ray beam property analyzer based on a multi-crystal diffraction geometry, including a crystal-based monochromator and a Laue crystal in a dispersive setting to the monochromator. By measuring the flat beam and the transmitted beam profiles, the system can provide a simultaneous high-sensitivity characterization of the source size, divergence, position, and angle in the diffraction plane of the multi-crystal system. Detailed theoretical modeling predicts the system's feasibility as a versatile characterization tool for monitoring the X-ray source and beam properties. The experimental validation was conducted at a bending magnet beamline at the Swiss Light Source by varying the machine parameters. A measurement sensitivity of less than 10% of a source size of around 12 µm is demonstrated. The proposed system offers a compact setup with simple X-ray optics and can also be utilized for monitoring the electron source.

12.
Arch Microbiol ; 204(6): 299, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35513559

RESUMEN

Microbiologically influenced corrosion (MIC) is becoming a knotty problem for transmission pipelines. Developing MIC mitigation strategies for pipelines is increasingly urgent. In this study, MIC resistance against Pseudomonas aeruginosa of the X65 pipeline steels with (X65Cu) and without (X65) Cu addition was comparatively studied by electrochemical measurements and surface observation. Experimental results demonstrated that the corrosion rate of X65Cu steel was lower than that of X65 steel no matter in sterile or bacteria-containing media. Cu addition is helpful to the formation of the rust layer in the sterile medium. Surface observation showed that X65Cu steel exhibited a better MIC resistance against P. aeruginosa than that of X65 steel. Cu ions released from the X65Cu steel could effectively kill the P. aeruginosa attached on the steel surface, thus evidently decreased the pit depth and diameter.


Asunto(s)
Pseudomonas aeruginosa , Acero , Biopelículas , Corrosión , Acero/farmacología
14.
J Synchrotron Radiat ; 29(Pt 1): 159-166, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34985433

RESUMEN

Rigorous dynamical theory calculations show that four-beam diffraction (4BD) can be activated only by a unique photon energy and a unique incidence direction. Thus, 4BD may be used to precisely calibrate X-ray photon energies and beam positions. Based on the principles that the forbidden-reflection 4BD pattern, which is typically an X-shaped cross, can be generated by instant imaging using the divergent beam from a point source without rocking the crystal, a detailed real-time high-resolution beam (and source) position monitoring scheme is illustrated for monitoring two-dimensional beam positions and directions of modern synchrotron light sources, X-ray free-electron lasers and nano-focused X-ray sources.

15.
J Imaging ; 7(12)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34940716

RESUMEN

Near-field X-ray speckle tracking has been used in phase-contrast imaging and tomography as an emerging technique, providing higher contrast images than traditional absorption radiography. Most reported methods use sandpaper or membrane filters as speckle generators and digital image cross-correlation for phase reconstruction, which has either limited resolution or requires a large number of position scanning steps. Recently, we have proposed a novel coded-mask-based multi-contrast imaging (CMMI) technique for single-shot measurement with superior performance in efficiency and resolution compared with other single-shot methods. We present here a scanning CMMI method for the ultimate imaging resolution and phase sensitivity by using a coded mask as a high-contrast speckle generator, the flexible scanning mode, the adaption of advanced maximum-likelihood optimization to scanning data, and the multi-resolution analysis. Scanning CMMI can outperform other speckle-based imaging methods, such as X-ray speckle vector tracking, providing higher quality absorption, phase, and dark-field images with fewer scanning steps. Scanning CMMI is also successfully demonstrated in multi-contrast tomography, showing great potentials in high-resolution full-field imaging applications, such as in vivo biomedical imaging.

16.
Materials (Basel) ; 14(18)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34576518

RESUMEN

Sulfide stress corrosion cracking (SSCC) has been of particular concern in high strength low alloyed (HSLA) steels used in the oil industry, and the non-metallic inclusions are usually considered as a detrimental factor to the SSCC resistance. In the present work, continuous casting (CC) and electroslag remelting (ESR) were adopted to fabricate a 125 ksi grade steel in order to evaluate the effect of microstructure with and without primary NbC carbides (inclusions) on the SSCC resistance in the steel. It was found that ESR could remove the primary NbC carbides, and hence, slightly increase the strength without deteriorating the SSCC resistance. The elimination of primary NbC carbides caused two opposite effects on the SSCC resistance in the studied steel. On the one hand, the elimination of primary NbC carbides increased the dislocation density and the proportion of high angle boundaries (HABs), which was not good to the SSCC resistance. On the other hand, the elimination of primary NbC carbides also induced more uniform nanosized secondary NbC carbides formed during tempering, providing many irreversible hydrogen traps. These two opposite effects on SSCC resistance due to the elimination of primary NbC carbides were assumed to be offset, and thus, the SSCC resistance was not greatly improved using ESR.

17.
Materials (Basel) ; 14(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576577

RESUMEN

The strength and plasticity balance of F/B dual-phase X80 pipeline steels strongly depends on deformation compatibility between the soft phase of ferrite and the hard phase of bainite; thus, the tensile strength of ferrite and bainite, as non-negligible factors affecting the deformation compatibility, should be considered first. In this purely theoretical paper, an abstract representative volume elements (RVE) model was developed, based on the mesostructure of an F/B dual-phase X80 pipeline steel. The effect of the yield strength difference between bainite and ferrite on tensile properties and the strain hardening behaviors of the mesostructure was studied. The results show that deformation first occurs in ferrite, and strain and stress localize in ferrite prior to bainite. In the modified Crussard-Jaoul (C-J) analysis, as the yield strength ratio of bainite to ferrite (σy,B/σy,F) increases, the transition strain associated with the deformation transformation from ferrite soft phase deformation to uniform deformation of ferrite and bainite increases. Meanwhile, as the uncoordinated deformation of ferrite and bainite is enhanced, the strain localization factor (SLF) increases, especially the local strain concentration. Consequently, the yield, tensile strength, and yield ratio (yield strength/tensile strength) increase with the increase in σy,B/σy,F. Inversely, the strain hardening exponent and uniform elongation decrease.

18.
Materials (Basel) ; 14(18)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34576582

RESUMEN

In this study the strain capacity and work-hardening behavior of bainite (B), bainite + polygonal ferrite (B + PF), and bainite + polygonal ferrite + pearlite (B + PF + P) microstructures are compared. The work hardening exponent (n), instantaneous work hardening value (ni), and differential Crussard-Jaoul (DC-J) analysis were used to analyze the deformation behavior. The best comprehensive mechanical properties were obtained by the introduction of the pearlite phase in B + PF dualphase with the tensile strength of 586 MPa and total elongation of 31.0%. The additional pearlite phase adjusted the strain distribution, which increased the initial work hardening exponent and then maintained the entire plastic deformation at a high level, thus delayed necking. The introduction of pearlite reduced the risk of micro-void initiation combined with the high frequency of high angle grain boundaries (HAGBs) in triple-phase steel, which led to a low crack propagation rate.

19.
J Synchrotron Radiat ; 28(Pt 1): 125-130, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399561

RESUMEN

Side-bounce beamlines with fixed-exit angles have been intended to operate with only one selected energy. However, a tunable monochromator in a new geometry is presented here that will make side-bounce beamlines energy tunable. It requires the addition of two more rotations. Analytic solutions for the values of these two rotation angles are provided. The validity of the new concept was checked by ray tracing and two-dimensional searches in the additional angles. Operational details on the new scheme, including the exit offset and steering of the beams, were determined. In addition to tunability, the new monochromator will reduce the loss from the polarization factor at low energies.

20.
Rev Sci Instrum ; 92(12): 123706, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34972426

RESUMEN

A hybrid deformable x-ray mirror consisting of a mechanical bender and a bimorph deformable mirror has been developed to realize adaptive optical systems, such as zoom condenser optics, for synchrotron-radiation-based x-ray microscopy. In the developed system, both bending mechanisms comprehensively contribute to the formation of the target mirror shape and can narrow the role of piezoelectric actuators, thereby enabling a more stable operation. In this study, the behavior of the bimorph mirror under the clamped condition was investigated, and the sharing of the deformation amount for each bending mechanism was optimized to minimize the amplitude of the voltage distribution of the bimorph mirror.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...