Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
2.
Clin Exp Rheumatol ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38757295

RESUMEN

OBJECTIVES: The association between the ingestion of n-3 and n-6 fatty acids and rheumatoid arthritis (RA) remains unclear. To address this, this study utilised data from the National Health and Nutrition Examination Survey (NHANES) spanning from 1999 to 2020. METHODS: Dietary intake information on n-3 and n-6 fatty acids was gathered through 24-hour interviews about dietary recall and adjusted based on weight. RA patient data was collected using questionnaires. Associations were evaluated using logistic regression and spline analyses. The study included a total of 50,352 participants in a cross-sectional manner. RESULTS: In the adjusted Model 2, higher odds ratios (ORs) of 0.72 (95% CI: 0.60-0.86) and 0.76 (95% CI: 0.62-0.92) were observed for n-3 and n-6 fatty acid intake, respectively, compared to the lowest category. CONCLUSIONS: The results suggest a negative correlation between the ingestion of n-3 and n-6 fatty acids and the risk of rheumatoid arthritis in US adults.

3.
J Exp Clin Cancer Res ; 43(1): 101, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566204

RESUMEN

BACKGROUND: Regulatory B cells (Bregs), a specialized subset of B cells that modulate immune responses and maintain immune tolerance in malignant tumors, have not been extensively investigated in the context of bladder cancer (BLCA). This study aims to elucidate the roles of Bregs and Breg-related genes in BLCA. METHODS: We assessed Breg infiltration levels in 34 pairs of BLCA and corresponding paracancerous tissues using immunohistochemical staining. We conducted transwell and wound healing assays to evaluate the impact of Bregs on the malignant phenotype of SW780 and T24 cells. Breg-related genes were identified through gene sets and transcriptional analysis. The TCGA-BLCA cohort served as the training set, while the IMvigor210 and 5 GEO cohorts were used as external validation sets. We employed LASSO regression and random forest for feature selection and developed a risk signature using Cox regression. Primary validation of the risk signature was performed through immunohistochemical staining and RT-qPCR experiments using the 34 local BLCA samples. Additionally, we employed transfection assays and flow cytometry to investigate Breg expansion ability and immunosuppressive functions. RESULTS: Breg levels in BLCA tissues were significantly elevated compared to paracancerous tissues (P < 0.05) and positively correlated with tumor malignancy (P < 0.05). Co-incubation of SW780 and T24 cells with Bregs resulted in enhanced invasion and migration abilities (all P < 0.05). We identified 27 Breg-related genes, including CD96, OAS1, and CSH1, which were integrated into the risk signature. This signature demonstrated robust prognostic classification across the 6 cohorts (pooled HR = 2.25, 95% CI = 1.52-3.33). Moreover, the signature exhibited positive associations with advanced tumor stage (P < 0.001) and Breg infiltration ratios (P < 0.05) in the local samples. Furthermore, the signature successfully predicted immunotherapeutic sensitivity in three cohorts (all P < 0.05). Knockdown of CSH1 in B cells increased Breg phenotype and enhanced suppressive ability against CD8 + T cells (all P < 0.05). CONCLUSIONS: Bregs play a pro-tumor role in the development of BLCA. The Breg-related gene signature established in this study holds great potential as a valuable tool for evaluating prognosis and predicting immunotherapeutic response in BLCA patients.


Asunto(s)
Linfocitos B Reguladores , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia , Linfocitos T CD8-positivos , Citometría de Flujo , Inmunoterapia , Pronóstico
4.
Plants (Basel) ; 13(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38611468

RESUMEN

Citrus is the largest fruit crop around the world, while high nitrogen (N) application in citrus orchards is widespread in many countries, which results not only in yield, quality and environmental issues but also slows down the establishment of citrus canopies in newly cultivated orchards. Thus, the objective of this study was to investigate the physiological inhibitory mechanism of excessive N application on the growth of citrus seedlings. A pot experiment with the citrus variety Orah (Orah/Citrus junos) at four N fertilization rates (0, 50, 100, and 400 mg N/kg dry soil, denoted as N0, N50, N100, and N400, respectively) was performed to evaluate the changes of root morphology, biomass, N accumulation, enzyme activities, and so on. The results showed that the N400 application significantly reduced the total biomass (from 14.24 to 6.95 g/Plant), N accumulation (from 0.65 to 0.33 g/Plant) and N use efficiency (92.69%) in citrus seedlings when compared to the N100 treatment. The partial least squares pathway model further showed that the decline of biomass and N accumulation by high N application were largely attributed to the reduction of root growth through direct and indirect effects (the goodness of fit under the model was 0.733.) rather than just soil N transformation and activity of root N uptake. These results are useful to optimize N management through a synergistic N absorption and utilization by citrus seedlings.

5.
Sci Total Environ ; 926: 172128, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38565350

RESUMEN

The threat of heavy metal (HM) pollution looms large over plant growth and human health, with tobacco emerging as a highly vulnerable plant due to its exceptional absorption capacity. The widespread cultivation of tobacco intensifies these concerns, posing increased risks to human health as HMs become more pervasive in tobacco-growing soils globally. The absorption of these metals not only impedes tobacco growth and quality but also amplifies health hazards through smoking. Implementing proactive strategies to minimize HM absorption in tobacco is of paramount importance. Various approaches, encompassing chemical immobilization, transgenic modification, agronomic adjustments, and microbial interventions, have proven effective in curbing HM accumulation and mitigating associated adverse effects. However, a comprehensive review elucidating these control strategies and their mechanisms remains notably absent. This paper seeks to fill this void by examining the deleterious effects of HM exposure on tobacco plants and human health through tobacco consumption. Additionally, it provides a thorough exploration of the mechanisms responsible for reducing HM content in tobacco. The review consolidates and synthesizes recent domestic and international initiatives aimed at mitigating HM content in tobacco, delivering a comprehensive overview of their current status, benefits, and limitations.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Nicotiana , Metales Pesados/análisis , Plantas , Contaminación Ambiental/análisis , Suelo/química , Contaminantes del Suelo/análisis
6.
Mol Cancer ; 23(1): 52, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461272

RESUMEN

BACKGROUND: Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is one of the causes of tumor immune tolerance and failure of cancer immunotherapy. Here, we found that bladder cancer (BCa)-derived exosomal circRNA_0013936 could enhance the immunosuppressive activity of PMN-MDSCs by regulating the expression of fatty acid transporter protein 2 (FATP2) and receptor-interacting protein kinase 3 (RIPK3). However, the underlying mechanism remains largely unknown. METHODS: BCa-derived exosomes was isolated and used for a series of experiments. RNA sequencing was used to identify the differentially expressed circRNAs. Western blotting, immunohistochemistry, immunofluorescence, qRT-PCR, ELISA and Flow cytometry were performed to reveal the potential mechanism of circRNA_0013936 promoting the immunosuppressive activity of PMN-MDSC. RESULTS: CircRNA_0013936 enriched in BCa-derived exosomes could promote the expression of FATP2 and inhibit the expression of RIPK3 in PMN-MDSCs. Mechanistically, circRNA_0013936 promoted the expression of FATP2 and inhibited the expression of RIPK3 expression via sponging miR-320a and miR-301b, which directly targeted JAK2 and CREB1 respectively. Ultimately, circRNA_0013936 significantly inhibited the functions of CD8+ T cells by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway, and down-regulating RIPK3 through the circRNA_0013936/miR-301b/CREB1 pathway in PMN-MDSCs. CONCLUSIONS: BCa-derived exosomal circRNA_0013936 promotes suppressive immunity by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway and down-regulating RIPK3 through the circRNA_0013936/miR-301b-3p/CREB1 pathway in PMN-MDSCs. These findings help to find new targets for clinical treatment of human bladder cancer.


Asunto(s)
MicroARNs , Células Supresoras de Origen Mieloide , ARN Circular , Neoplasias de la Vejiga Urinaria , Humanos , Linfocitos T CD8-positivos/metabolismo , Ácidos Grasos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Proteínas Quinasas/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Exosomas/genética , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
7.
Mitochondrial DNA B Resour ; 9(3): 309-313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38450410

RESUMEN

Ammodendron bifolium, a rare deciduous shrub, is the only species of Ammodendron (Fabaceae) in China, which distributes in Huocheng county, Xinjiang. This study employed high-throughput sequencing technology to assemble the complete chloroplast genome sequence of A. bifolium. The entire length of chloroplast genome is 154,426 bp. It comprises 128 genes, which include 85 protein-coding genes, 35 tRNA genes, and 8 rRNA genes. The A. bifolium chloroplast genome has a GC content of 36.41%. Phylogenetic analysis strongly supported that A. bifolium is sister to the members of the Sophora genus. This study will provide the genetic information data for further phylogenetic studies of Ammodendron.

8.
Mater Horiz ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38501208

RESUMEN

Transition metal dichalcogenides (TMDCs) represent a well-known material family with diverse structural phases and rich electronic properties; they are thus an ideal platform for studying the emergence and exotic phenomenon of superconductivity (SC). Herein, we propose the existence of tetragonal TMDCs with a distorted Lieb (dLieb) lattice structure and the stabilized transition metal disulfides (MS2), including dLieb-ZrS2, dLieb-NbS2, dLieb-MnS2, dLieb-FeS2, dLieb-ReS2, and dLieb-OsS2. Except for semiconducting dLieb-ZrS2 and magnetic dLieb-MnS2, the rest of metallic dLieb-MS2 was found to exhibit intrinsic SC with the transition temperature (TC) ranging from ∼5.4 to ∼13.0 K. The TC of dLieb-ReS2 and dLieb-OsS2 exceeded 10 K and was higher than that of the intrinsic SC in the known metallic TMDCs, which is attributed to the significant phonon-softening enhanced electron-phonon coupling strength. Different from the Ising spin-orbit coupling (SOC) effect in existing non-centrosymmetric TMDCs, the non-magnetic dLieb-MS2 monolayers exhibit the Dresselhaus SOC effect, which is featured by in-plane spin orientations and will give rise to the topological SC under proper conditions. In addition to enriching the structural phases of TMDCs, our work predicts a series of SC candidates with high intrinsic TC and topological non-triviality used for fault-tolerant quantum computation.

9.
Front Plant Sci ; 15: 1356224, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469331

RESUMEN

Introduction: The incorporation of green manures substantially enhances the conversion of external phosphorus (P) fertilizers and soil-reserved P into forms readily available to plants. The study aims to evaluate the influence of green manure additions on soil phosphorus dynamics and citrus growth, considering different green manure species and initial soil phosphorus levels. Additionally, the research seeks to elucidate the microbiological mechanisms underlying the observed effects. Methods: A citrus pot experiment was conducted under both P-surplus (1.50 g·P·kg-1) and P-deficient (0.17 g·P·kg-1) soils with incorporating legume (Leg), non-legume (Non-Leg) or no green manure residues (CK), and 18O-P labeled KH2PO4 (0.5 g, containing 80‰ δ18Op) was additionally introduced to trace the turnover characteristics of chemical P fertilizer mediated by soil microorganisms. Results and discussion: In P-surplus soil, compared with the CK treatment, the Leg treatment significantly increased soil H2O-Pi (13.6%), NaHCO3-Po (8.9%), NaOH-Pi (9.5%) and NaOH-Po (30.0%) content. It also promoted rapid turnover of P sources into H2O-Pi and NaHCO3-Pi pools by enhancing the phoC (576.6%) gene abundance. In contrast, the Non-Leg treatment significantly augmented soil H2O-Pi (9.2%) and NaHCO3-Po (8.5%) content, facilitating the turnover of P sources into NaHCO3-Pi pools. Under P-deficient soil conditions, compared with the CK treatment, the Leg treatment notably raised soil H2O-Pi (150.0%), NaHCO3-Pi (66.3%), NaHCO3-Po (34.8%) and NaOH-Pi (59.0%) content, contributing to the transfer of P sources into NaHCO3-Pi and NaOH-Pi pools. This effect was achieved through elevated ALP (33.8%) and ACP (12.9%) activities and increased pqqC (48.1%), phoC (42.9%), phoD (21.7%), and bpp (27.4%) gene abundances. The Non-Leg treatment, on the other hand, led to significant increases in soil NaHCO3-Pi (299.0%) and NaHCO3-Po (132.6%) content, thereby facilitating the turnover of P sources into NaHCO3-Pi and NaOH-Pi pools, except for the phoC gene abundance. Both Leg and Non-Leg treatments significantly improved citrus growth (7.3-20.0%) and P uptake (15.4-42.1%) in P-deficient soil but yielded no substantial effects in P-surplus soil. In summary, introducing green manure crops, particularly legume green manure, emerges as a valuable approach to enhance soil P availability and foster fruit tree growth in orchard production.

10.
Nat Food ; 5(3): 241-250, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38486125

RESUMEN

Returning organic nutrient sources (for example, straw and manure) to rice fields is inevitable for coupling crop-livestock production. However, an accurate estimate of net carbon (C) emissions and strategies to mitigate the abundant methane (CH4) emission from rice fields supplied with organic sources remain unclear. Here, using machine learning and a global dataset, we scaled the field findings up to worldwide rice fields to reconcile rice yields and net C emissions. An optimal organic nitrogen (N) management was developed considering total N input, type of organic N source and organic N proportion. A combination of optimal organic N management with intermittent flooding achieved a 21% reduction in net global warming potential and a 9% rise in global rice production compared with the business-as-usual scenario. Our study provides a solution for recycling organic N sources towards a more productive, carbon-neutral and sustainable rice-livestock production system on a global scale.


Asunto(s)
Nitrógeno , Oryza , Animales , Nitrógeno/análisis , Agricultura , Suelo , Carbono , Agua , Óxido Nitroso/análisis , Fertilizantes/análisis , Ganado
11.
Sci Total Environ ; 923: 171406, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38432361

RESUMEN

Global climate change has significantly impacted the production of various crops, particularly long-term fruit-bearing plants such as citrus. This study analyzed the fruit quality of 12 citrus orchards (Citrus Sinensis L.Osbeck cv. Bingtang) in a subtropical region in Yunnan, China from 2014 to 2022. The results indicated that high rainfall (>220 mm) and low cumulative temperature (<3150 °C) promoted increases in titratable acidity (>1.8 %) in young fruits. As the fruits further expanded (with a horizontal diameter increasing from 50 to 65 mm), excessive rainfall (300-400 mm), lower cumulative temperature (<2400 °C), and a reduced diurnal temperature range (<10 °C) hindered decreases in titratable acidity. Conversely, low rainfall (<220 mm), high cumulative temperature (>3150 °C), and a high diurnal temperature range (>14 °C) promoted the accumulation of soluble solids in young fruits (9 %) at 120 days after flowering (DAF). Furthermore, low rainfall (<100 mm) favored the accumulation of soluble solids (1.5 %) during fruit expansion (195-225DAF). To quantify the relationship between fruit acidity and climate variables at 120 DAF, we developed a regression model, which was further validated by actual measurements and accurately predicted fruit acidity in 2023. Our findings have the potential to assist citrus growers in optimizing cultivation techniques for the production of high-quality citrus under increasingly variable climatic conditions.


Asunto(s)
Citrus sinensis , Citrus , Cambio Climático , China , Frío , Frutas
12.
Cancer Sci ; 115(5): 1417-1432, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38422408

RESUMEN

Platelets and M2 macrophages both play crucial roles in tumorigenesis, but their relationship and the prognosis value of the relative genes in bladder cancer (BLCA) remain obscure. In the present study, we found that platelets stimulated by BLCA cell lines could promote M2 macrophage polarization, and platelets were significantly associated with the infiltration of M2 macrophages in BLCA samples. Through the bioinformatic analyses, A2M, TGFB3, and MYLK, which were associated with platelets and M2 macrophages, were identified and verified in vitro and then included in the predictive model. A platelet and M2 macrophage-related gene signature was constructed to evaluate the prognosis and immunotherapeutic sensitivity, helping to guide personalized treatment and to disclose the underlying mechanisms.


Asunto(s)
Plaquetas , Inmunoterapia , Macrófagos , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/patología , Humanos , Pronóstico , Macrófagos/inmunología , Macrófagos/metabolismo , Plaquetas/metabolismo , Línea Celular Tumoral , Inmunoterapia/métodos , Masculino , Femenino , Regulación Neoplásica de la Expresión Génica , Biología Computacional/métodos , Ratones , Transcriptoma , Persona de Mediana Edad , Perfilación de la Expresión Génica/métodos
13.
Huan Jing Ke Xue ; 45(1): 364-375, 2024 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-38216486

RESUMEN

In this study, we sought to quantify the effect of planting structure change on fertilizer input and environmental cost in Chongqing and develop scientific and rational strategies for chemical fertilizer reduction. Based on the crop fertilizer quota standard and large sample farmer survey data under the medium productivity level in Chongqing, we evaluated and analyzed the application reduction potential and environmental benefits of fertilizer with the difference method and life cycle assessment. The results showed that:① since Chongqing became a municipality directly under the central government (1997), Chongqing crop planting structure had greatly changed, and the proportion of food crop (rice, corn, wheat, bean, and potato) decreased by 21%. The area of fruits and vegetables increased from 3.36×105 hm2 to 1.05×106 hm2, and their proportion increased by 20%. ② Nearly 55% of fertilizers had been consumed by vegetable (37%) and citrus production systems, and 11%, 12%, and 12% of fertilizers were consumed by rice, corn, and potato, respectively. ③ The total fertilizer reduction of the Chongqing planting industry could reach up to 1.69×105 tons during the period of "the 14th Five-Year Plan," with a fertilizer reduction potential of 18.6%. The fertilizer reduction potential (reduction amount) of rice, corn, citrus, and vegetables would reach 0.3% (2.9×102 tons), 12% (1.45×104 tons), 21% (3.65×104 tons), and 30% (1.18×105 tons), respectively. On the other hand, the rape system was insufficient in phosphorus potassium fertilizers, and the corn tended to be insufficient in potash fertilizer. ④ The current production level was low, and the nitrogen loss, greenhouse gas emissions, and eutrophication potential in the planting industry of Chongqing reached 1.81×105 tons (N), 1.43×107 tons (CO2-eq), and 1.74×105 tons (PO4-eq). With the increase in the realization degree of the crop quota standard (60%-100%), the reactive nitrogen loss, greenhouse gas emissions, and eutrophication potential decreased by 14.9%-24.9%, 10.1%-16.7%, and 13.8%-23%, respectively. The structure of the planting industry in Chongqing significantly changed, the total fertilizer consumption in Chongqing tended to decline gradually, and the fertilization intensity of commercial crops stayed at a high level. The agricultural fertilizer reduction potential and the reactive nitrogen and greenhouse gas emission reduction potential were large, especially for citrus and vegetable production systems. However, it is also necessary to pay attention to insufficient corn potash fertilizer and rape phosphorus potassium fertilizer investment and carry out collaborative promotion of fertilizer reduction.


Asunto(s)
Gases de Efecto Invernadero , Oryza , Fertilizantes/análisis , Gases de Efecto Invernadero/análisis , Agricultura/métodos , Verduras , Nitrógeno/análisis , Fósforo/análisis , Potasio , China , Suelo/química , Óxido Nitroso/análisis
14.
Tree Physiol ; 44(2)2024 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-38195893

RESUMEN

The growth of fruit trees depends on the nitrogen (N) remobilization in mature tissues and N acquisition from the soil. However, in evergreen mature citrus (Citrus reticulata Blanco) leaves, proteins with N storage functions and hub molecules involved in driving N remobilization remain largely unknown. Here, we combined proteome and physiological analyses to characterize the spatiotemporal mechanisms of growth of new leaves and storage protein degradation in mature leaves of citrus trees exposed to low-N and high-N fertilization in the field. Results show that the growth of new leaves is driven by remobilization of stored reserves, rather than N uptake by the roots. In this context, proline and arginine in mature leaves acted as N sources supporting the growth of new leaves in spring. Time-series analyses with gel electrophoresis and proteome analysis indicated that the mature autumn shoot leaves are probably the sites of storage protein synthesis, while the aspartic endopeptidase protein is related to the degradation of storage proteins in mature citrus leaves. Furthermore, bioinformatic analysis based on protein-protein interactions indicated that glutamate synthetase and ATP-citrate synthetase are hub proteins in N remobilization from mature citrus leaves. These results provide strong physiological data for seasonal optimization of N fertilizer application in citrus orchards.


Asunto(s)
Citrus , Proteoma , Proteoma/metabolismo , Árboles/fisiología , Proteolisis , Citrus/metabolismo , Hojas de la Planta/fisiología , Nitrógeno/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo
15.
Mater Today Bio ; 24: 100933, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38283982

RESUMEN

Injured articular cartilage is a leading cause for osteoarthritis. We recently discovered that endogenous stem/progenitor cells not only reside in the superficial zone of mouse articular cartilage, but also regenerated heterotopic bone and cartilage in vivo. However, whether critical-size osteochondral defects can be repaired by pure induced chemotatic cell homing of these endogenous stem/progenitor cells remains elusive. Here, we first found that cells in the superficial zone of articular cartilage surrounding surgically created 3 × 1 mm defects in explant culture of adult goat and rabbit knee joints migrated into defect-filled fibrin/hylaro1nate gel, and this migration was significantly more robust upon delivery of exogenous granulocyte-colony stimulating factor (G-CSF). Remarkably, G-CSF-recruited chondrogenic progenitor cells (CPCs) showed significantly stronger migration ability than donor-matched chondrocytes and osteoblasts. G-CSF-recruited CPCs robustly differentiated into chondrocytes, modestly into osteoblasts, and barely into adipocytes. In vivo, critical-size osteochondral defects were repaired by G-CSF-recruited endogenous cells postoperatively at 6 and 12 weeks in comparison to poor healing by gel-only group or defect-only group. ICRS and O'Driscoll scores of articular cartilage were significantly higher for both 6- and 12-week G-CSF samples than corresponding gel-only and defect-only groups. Thus, endogenous stem/progenitor cells may be activated by G-CSF, a Food and Drug Administration (FDA)-cleared bone-marrow stimulating factor, to repair osteochondral defects.

17.
Int J Rheum Dis ; 27(1): e15043, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38287539

RESUMEN

BACKGROUND: Hyperuricemia has been linked to various health conditions. However, the relationship between uric acid (UA) levels and lung function remains debated. METHODS: In a cross-sectional study of 6750 participants aged 20-69 from NHANES, we assessed UA levels and lung function (FVC and FEV1). We conducted regression analyses while adjusting for potential confounders. RESULTS: After accounting for factors like age, sex, BMI, smoking, and more, we found a negative association between UA FVC and FEV1. Specifically, for every 0.1 mg/dL increase in UA, FEV1 decreased by 15.265 mL, and FVC decreased by 24.46 mL. No association was observed with FEV1/FVC. Subgroup analyses revealed similar negative correlations among various groups, particularly in non-Hispanic Black females under 60. CONCLUSION: Serum UA levels are inversely associated with FEV1 and FVC in the American population, with a notable impact on non-Hispanic Black females under 60.


Asunto(s)
Pulmón , Ácido Úrico , Femenino , Humanos , Estados Unidos/epidemiología , Estudios Transversales , Volumen Espiratorio Forzado , Capacidad Vital , Encuestas Nutricionales
19.
Nat Commun ; 15(1): 62, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167266

RESUMEN

Pathogen genetic diversity varies in response to environmental changes. However, it remains unclear whether plant barriers to invasion could be considered a genetic bottleneck for phytopathogen populations. Here, we implement a barcoding approach to generate a pool of 90 isogenic and individually barcoded Ralstonia solanacearum strains. We used 90 of these strains to inoculate tomato plants with different degrees of physical permeability to invasion (intact roots, wounded roots and xylem inoculation) and quantify the phytopathogen population dynamics during invasion. Our results reveal that the permeability of plant roots impacts the degree of population bottleneck, genetic diversity, and composition of Ralstonia populations. We also find that selection is the main driver structuring pathogen populations when barriers to infection are less permeable, i.e., intact roots, the removal of root physical and immune barriers results in the predominance of stochasticity in population assembly. Taken together, our study suggests that plant root permeability constitutes a bottleneck for phytopathogen invasion and genetic diversity.


Asunto(s)
Ralstonia solanacearum , Virulencia , Ralstonia solanacearum/genética , Permeabilidad , Enfermedades de las Plantas , Raíces de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...