Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Front Microbiol ; 15: 1394447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721601

RESUMEN

Introduction: Valsa canker, caused by Cytospora mali, is a destructive disease in apple production. However, the mechanism by which apple defend against C. mali infection remains unclear. Methods: In this study, the integrative transcriptional and metabolic analysis were used to investigate the responses of the 'Jin Hong' apple branches to the invasion of C. mali. Results and Discussion: Results showed that the differentially expressed genes were mainly enriched in the pathways of carbon metabolism, photosynthesis-antenna proteins, and biosynthesis of amino acids pathways. Additionally, the differentially accumulated metabolites were significantly enriched in aminoacyl-tRNA biosynthesis, fructose and mannose metabolism, and alanine, aspartate, and glutamate metabolism pathways. Conjoint analysis revealed that C. mali infection significantly altered 5 metabolic pathways, 8 highly relevant metabolites and 15 genes of apples. Among which the transcription factors WRKY and basic domain leucine zipper transcription family were induced, the α-linolenic acid and betaine were significantly accumulated in C. mali infected apple stems. This work presents an overview of the changes in gene expression and metabolic profiles in apple under the inoculation of C. mali, which may help to further screen out the mechanism of plant-pathogen interaction at the molecular level.

2.
Hypertens Res ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605141

RESUMEN

Preeclampsia (PE) is a multiple organ and system disease that seriously threatens the safety of the mother and infant during pregnancy, and has a profound impact on the morbidity and mortality of the mother and new babies. Presently, there are no remedies for cure of PE as to the mechanisms of PE are still unclear, and the only way to eliminate the symptoms is to deliver the placenta. Thus, new therapeutic targets for PE are urgently needed. Approximately 95% of human transcripts are thought to be non-coding RNAs, and the roles of them are to be increasingly recognized of great importance in various biological processes. Circular RNAs (circRNAs) are a class of non-coding RNAs, with no 5' caps and 3' polyadenylated tails, commonly produced by back-splicing of exons. The structure of circRNAs makes them more stable than their counterparts. Increasing evidence shows that circRNAs are involved in the pathogenesis of PE, but the biogenesis, functions, and mechanisms of circRNAs in PE are poorly understood. In the present review, we mainly summarize the biogenesis, functions, and possible mechanisms of circRNAs in the development and progression of PE, as well as opportunities and challenges in the treatment and prevention of PE.

3.
Inflammopharmacology ; 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520574

RESUMEN

Curcumol (Cur), a guaiane-type sesquiterpenoid hemiketal, is an important and representative bioactive component extracted from the essential oil of the rhizomes of Curcumae rhizoma which is also known as "Ezhu" in traditional Chinese medicine. Recently, Cur has received considerable attention from the research community due to its favorable pharmacological activities, including anti-cancer, hepatoprotective, anti-inflammatory, anti-viral, anti-convulsant, and other activities, and has also exerted therapeutic effect on various cancers, liver diseases, inflammatory diseases, and infectious diseases. Pharmacokinetic studies have shown that Cur is rapidly distributed in almost all organs of rats after intragastric administration with high concentrations in the small intestine and colon. Several studies focusing on structure-activity relationship (SAR) of Cur have shown that some Cur derivatives, chemically modified at C-8 or C-14, exhibited more potent anti-cancer activity and lower toxicity than Cur itself. This review aims to comprehensively summarize the latest advances in the pharmacological and pharmacokinetic properties of Cur in the last decade with a focus on its anti-cancer and hepatoprotective potentials, as well as the research progress in drug delivery system and potential applications of Cur to date, to provide researchers with the latest information, to highlighted the limitations of relevant research at the current stage and the aspects that should be addressed in future research. Our results indicate that Cur and its derivatives could serve as potential novel agents for the treatment of a variety of diseases, particularly cancer and liver diseases.

4.
Phytomedicine ; 128: 155472, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38461630

RESUMEN

BACKGROUND: Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide, imposing an enormous economic burden on individuals and human society. Laboratory studies have identified several drugs that target mitophagy for the prevention and treatment of CVD. Only a few of these drugs have been successful in clinical trials, and most studies have been limited to animal and cellular models. Furthermore, conventional drugs used to treat CVD, such as antiplatelet agents, statins, and diuretics, often result in adverse effects on patients' cardiovascular, metabolic, and respiratory systems. In contrast, traditional Chinese medicine (TCM) has gained significant attention for its unique theoretical basis and clinical efficacy in treating CVD. PURPOSE: This paper systematically summarizes all the herbal compounds, extracts, and active monomers used to target mitophagy for the treatment of CVD in the last five years. It provides valuable information for researchers in the field of basic cardiovascular research, pharmacologists, and clinicians developing herbal medicines with fewer side effects, as well as a useful reference for future mitophagy research. METHODS: The search terms "cardiovascular disease," "mitophagy," "herbal preparations," "active monomers," and "cardiac disease pathogenesis" in combination with "natural products" and "diseases" were used to search for studies published in the past five years until January 2024. RESULTS: Studies have shown that mitophagy plays a significant role in the progression and development of CVD, such as atherosclerosis (AS), heart failure (HF), myocardial infarction (MI), myocardial ischemia/reperfusion injury (MI/RI), cardiac hypertrophy, cardiomyopathy, and arrhythmia. Herbal compound preparations, crude extracts, and active monomers have shown potential as effective treatments for these conditions. These substances protect cardiomyocytes by inducing mitophagy, scavenging damaged mitochondria, and maintaining mitochondrial homeostasis. They display notable efficacy in combating CVD. CONCLUSION: TCM (including herbal compound preparations, extracts, and active monomers) can treat CVD through various pharmacological mechanisms and signaling pathways by inducing mitophagy. They represent a hotspot for future cardiovascular basic research and a promising candidate for the development of future cardiovascular drugs with fewer side effects and better therapeutic efficacy.


Asunto(s)
Enfermedades Cardiovasculares , Medicamentos Herbarios Chinos , Medicina Tradicional China , Mitofagia , Humanos , Mitofagia/efectos de los fármacos , Enfermedades Cardiovasculares/tratamiento farmacológico , Medicina Tradicional China/métodos , Medicamentos Herbarios Chinos/farmacología , Animales
5.
Ecotoxicol Environ Saf ; 274: 116177, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38461573

RESUMEN

Triphenyltin (TPT) is a typical persistent organic pollutant whose occurrence in coral reef ecosystems may threaten the survival of reef fishes. In this study, a brightly colored representative reef fish, Amphiprion ocellaris was used to explore the effects of TPT at environmental levels (1, 10, and 100 ng/L) on skin pigment synthesis. After the fish were exposed to TPT for 60 days, the skin became darker, owing to an increase in the relative area of black stripes, a decrease in orange color values while an increase in brown color values, and an increase in the number of melanocytes in the orange part of the skin tissues. To explore the mechanisms by which TPT induces darker body coloration, the enzymatic activity and gene expression levels of the members of melanocortin system that affect melanin synthesis were evaluated. Leptin levels and lepr expression were found to be increased after TPT exposure, which likely contributed to the increase found in pomc expression and α-melanocyte-stimulating hormone (α-MSH) levels. Then Tyr activity and mc1r, tyr, tyrp1, mitf, and dct were upregulated, ultimately increasing melanin levels. Importantly, RT-qPCR results were consistent with the transcriptome analysis of trends in lepr and pomc expression. Because the orange color values decreased, pterin levels and the pteridine metabolic pathway were also evaluated. The results showed that TPT induced BH4 levels and spr, xdh, and gch1 expression associated with pteridine synthesis decreased, ultimately decreasing the colored pterin content (sepiapterin). We conclude that TPT exposure interferes with the melanocortin system and pteridine metabolic pathway to increase melanin and decrease colored pterin levels, leading to darker body coloration in A. ocellaris. Given the importance of body coloration for the survival and reproduction of reef fishes, studies on the effects of pollutants (others alongside TPT) on body coloration are of high priority.


Asunto(s)
Melanocortinas , Compuestos Orgánicos de Estaño , Perciformes , Animales , Proopiomelanocortina , Ecosistema , Melaninas/genética , Pteridinas , Peces/genética , Perciformes/genética , Pterinas , Redes y Vías Metabólicas
6.
Heliyon ; 10(5): e25909, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38439839

RESUMEN

Objective: To investigate the stability of Acorus tatarinowii and Atractylodes lancea essential oils (ATaAL-EO) under a hot environment at 60 °C, and to analyze the differences in component, quantity, and quality changes, as well as variations in the main components, under different treatment methods of crude oil, ß-cyclodextrin inclusion of ATaAL-EO, and Pickering emulsion, to improve the stability and quality of ATaAL-EO. Methods: The stability of the ATaAL-EO group, the ß-cyclodextrin inclusion ATaAL-EO group, and the Pickering emulsion group were investigated under a 60 °C heat environment. Volatile oil retention rate and peroxide value were collected and measured. The volatile oil components of each group were determined by GC-MS, and t-tests were used to screen for differential components. PCA plots for each group were constructed using the OmicShare online platform. Line plots were generated using the Rmisc and reshape2 packages. Upset Venn diagrams under different hot environments were created using the OmicShare online platform to identify quantitative and qualitative changing components and heat map stack plots for newly generated compounds and connected line plots for disappearing compounds were produced for each group. Boxplots for the main component compounds under different hot environments were generated using the reshape2 and ggplot2 packages. Results: In a hot environment of 60 °C, the ß-cyclodextrin inclusion ATaAL-EO and Pickering emulsion group with 1, 3, and 8 h of placement showed higher retention and lower oxidation degree compared to the stability of the ATaAL-EO group. GC-MS analysis results showed that the stability of volatile components in the Pickering emulsion group and ß-cyclodextrin inclusion ATaAL-EO group was significantly improved compared to the crude oil group. Conclusion: ß-cyclodextrin inclusion complexes with ATaAL-EO, as well as Pickering emulsions, can significantly enhance the stability and quality of ATaAL-EO. Pickering emulsions have more advantages.

7.
Int J Biol Macromol ; 262(Pt 2): 130030, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336330

RESUMEN

Schisandra chinensis, as a famous medicinal and food homologous plant, has a long history of medicinal and dietary therapy. It has the functions of nourishing the kidney, calming the heart, tranquilising the mind, tonifying Qi and producing fluid to relieve mental stress, based on the theory of traditional Chinese medicine. Accumulating evidence has shown that S. chinensis polysaccharides (SCPs) are one of the most important bioactive macromolecules and exhibit diverse biological activities in vitro and in vivo, including neuroprotective, hepatoprotective, immunomodulatory, antioxidant, hypoglycemic, cardioprotective, antitumour and anti-inflammatory activities, etc. This review aims to thoroughly review the recent advances in the extraction and purification methods, structural features, biological activities and structure-activity relationships, potential applications and quality assessment of SCPs, and further highlight the therapeutic potentials and health functions of SCPs in the fields of therapeutic agents and functional food development. Future insights and challenges of SCPs were also critically discussed. Overall, the present review provides a theoretical overview for the further development and utilization of S. chinensis polysaccharides in the health food and pharmaceutical fields.


Asunto(s)
Extractos Vegetales , Schisandra , Extractos Vegetales/química , Schisandra/química , Antioxidantes/farmacología , Dieta , Polisacáridos/química
8.
Int J Biol Macromol ; 263(Pt 1): 130206, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373568

RESUMEN

Hippophae rhamnoides L. (sea buckthorn) is a type of traditional Chinese medicine with a long history of clinical application. It is used in the improvement and treatment of various diseases as medicine and food to strengthen the stomach and digestion, relieving cough and resolving phlegm, promoting blood circulation, and resolving blood stasis in traditional Chinese medicine. Emerging evidence has shown that H. rhamnoides polysaccharides (HRPs) are vital bioactive macromolecules responsible for its various health benefits. HRPs possess the huge potential to develop a drug improving or treating different diseases. In this review, we comprehensively and systematically summarize the recent information on extraction and purification methods, structural features, biological activities, structure-activity relationships, and potential industry applications of HRPs and further highlight the therapeutic potential and sanitarian functions of HRPs in the fields of therapeutic agents and functional food development. Additionally, this paper also lists a variety of biological activities of HRPs in vitro and in vivo roundly. Finally, this paper also discusses the structure-activity relationships and potential applications of HRPs. Overall, this work will help to have a better in-depth understanding of HRPs and provide a scientific basis and direct reference for more scientific and rational applications.


Asunto(s)
Hippophae , Hippophae/química , Frutas/química , Polisacáridos/farmacología , Polisacáridos/análisis
9.
J Ethnopharmacol ; 326: 117979, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38412892

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Mesona chinensis Benth. (or Platostoma palustre (Blume) A. J. Paton) is an important medicinal and edible plant also known as the Hsian-tsao in China and Southeast Asian countries. It is cold in nature and sweet in taste, with the effects of clearing heat, relieving heatstroke and diuretic, and traditionally used to treat heatstroke, erysipelas, hypertension, joint pain and other diseases in folk medicine. It is also a popular supplement with the function of detoxifying and heat-clearing use in Asia. It is used to be processed into the popular tea, Bean jelly, and so on. Published studies have demonstrated that polysaccharides from M. chinensis (MCPs) are one of the principal bioactive ingredients with a variety of health-promoting effects in the prevention and treatment of diseases, including antioxidant, immunomodulation, anti-inflammatory, hepatoprotective, anti-tumor, hypoglycemic, regulation of gut microbiota, and other pharmacological properties. AIM OF THE REVIEW: This review aims to compile the extraction and purification methods, structural characteristics, pharmacological activities including the mechanism of action of MCPs, and to further understand the applications of M. chinensis in order to lay the foundation for the development of MCPs. MATERIALS AND METHODS: By inputting the search term "Mesona chinensis polysaccharides", relevant research information was obtained from databases such as PubMed, Google Scholar, Web of Science, and China National Knowledge Infrastructure (CNKI). RESULTS: More than 40 polysaccharides have been extracted from M. chinensis, different extraction and purification methods have been described, as well as the structural features and pharmacological activities of MCPs have been systematically reviewed. Polysaccharides, as important components of M. chinensis, were mainly extracted by methods such as hot water dipping method, hot alkali extraction method, enzyme-assisted extraction method and ultrasonic-assisted extraction method, subsequently obtained by decolorization, deproteinization, removal of other small molecules and separation on various chromatographic columns. The chemical composition and structure of MCPs show diversity and have a variety of pharmacological activities, including antioxidant, immunomodulation, anti-inflammatory, hepatoprotective, anti-tumor, hypoglycemic, regulation of gut microbiota, and so on. CONCLUSIONS: This article systematically reviews the research progress of MCPs in terms of extraction and purification, structural characteristics, rheological gel properties, pharmacological properties, and safety assessment. The potentials and roles of M. chinensis in the field of medicine, functional food, and materials are further highlighted to provide references and bases for the high-value processing and utilization of MCPs.


Asunto(s)
Golpe de Calor , Lamiaceae , Humanos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/química , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Polisacáridos/química , Lamiaceae/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Hipoglucemiantes
10.
iScience ; 27(3): 109041, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361626

RESUMEN

Patients with neurodegenerative diseases exhibit diminished basal forebrain (BF) volume compared to healthy individuals. However, it's uncertain whether this difference is consistent between sexes. It has been reported that BF volume moderately atrophies during aging, but the effect of sex on BF volume changes during the normal aging process remains unclear. In the cross-sectional study, we observed a significant reduction in BF volume in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD) compared to Healthy Controls (HCs), especially in the Ch4 subregion. Notably, significant differences in BF volume between MCI and HCs were observed solely in the female group. Additionally, we identified asymmetrical atrophy in the left and right Ch4 subregions in female patients with AD. In the longitudinal analysis, we found that aging seemed to have a minimal impact on BF volume in males. Our study highlights the importance of considering sex as a research variable in brain science.

11.
iScience ; 27(1): 108703, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38205248

RESUMEN

The "Fetal Origins of Adult Disease (FOAD)" hypothesis holds that adverse factors during pregnancy can increase the risk of chronic diseases in offspring. Here, we investigated the effects of prenatal hypoxia (PH) on brain structure and function in adult offspring and explored the role of the N6-methyladenosine (m6A) pathway. The results suggest that abnormal cognition in PH offspring may be related to the dysregulation of the m6A pathway, specifically increased levels of YTHDF3 in the hippocampus. YTHDF3 interacts with BTG2 and is involved in the decay of Cbln1 mRNA, leading to the down-regulation of Cbln1 expression. Deficiency of Cbln1 may contribute to abnormal synaptic function, which in turn causes cognitive impairment in PH offspring. This study provides a scientific clues for understanding the mechanisms of impaired cognition in PH offspring and provides a theoretical basis for the treatment of cognitive impairment in offspring exposed to PH.

13.
Cell Mol Life Sci ; 81(1): 20, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38195774

RESUMEN

Accumulating research shows that prenatal exposure to maternal stress increases the risk of behavioral and mental health problems for offspring later in life. However, how prenatal stress affects offspring behavior remains unknown. Here, we found that prenatal stress (PNS) leads to reduced Ahi1, decreased synaptic plasticity and cognitive impairment in offspring. Mechanistically, Ahi1 and GR stabilize each other, inhibit GR nuclear translocation, promote Ahi1 and WDR68 binding, and inhibit DYRK1A and WDR68 binding. When Ahi1 deletion or prenatal stress leads to hyperactivity of the HPA axis, it promotes the release of GC, leading to GR nuclear translocation and Ahi1 degradation, which further inhibits the binding of Ahi1 and WDR68, and promotes the binding of DYRK1A and WDR68, leading to elevated DYRK1A, reduced synaptic plasticity, and cognitive impairment. Interestingly, we identified RU486, an antagonist of GR, which increased Ahi1/GR levels and improved cognitive impairment and synaptic plasticity in PNS offspring. Our study contributes to understanding the signaling mechanisms of prenatal stress-mediated cognitive impairment in offspring.


Asunto(s)
Disfunción Cognitiva , Sistema Hipotálamo-Hipofisario , Femenino , Embarazo , Humanos , Sistema Hipófiso-Suprarrenal , Disfunción Cognitiva/etiología , Plasticidad Neuronal
14.
Int J Biol Macromol ; 259(Pt 1): 129047, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171434

RESUMEN

Platycodon grandiflorum, a globally recognized medicinal and edible plant, possesses significant nutritional value and pharmacological value. In traditional Chinese medicine, it has the effects of tonifying the spleen and replenishing the Qi, moistening the lung and relieving the cough, clearing the heat and detoxifying, and relieving the pain. Accumulating evidence has revealed that the polysaccharides from P. grandiflorum (PGPs) are one of the major and representative biologically active macromolecules and have diverse biological activities, such as immunomodulatory activity, anti-inflammatory activity, anti-tumor activity, regulation of the gut microbiota, anti-oxidant activity, anti-apoptosis activity, anti-angiogenesis activity, hypoglycemic activity, anti-microbial activity, and so on. Although the polysaccharides extracted from P. grandiflorum have been extensively studied for the extraction and purification methods, structural characteristics, and pharmacological activities, the knowledge of their structures and bioactivity relationship, toxicologic effects, and pharmacokinetic profile is limited. The main purpose of the present review is to provide comprehensively and systematically reorganized information on extraction and purification, structure characterizations, and biological functions as well as toxicities of PGPs to support their therapeutic potentials and sanitarian functions. New valuable insights for future research regarding PGPs were also proposed in the fields of therapeutic agents and functional foods.


Asunto(s)
Platycodon , Humanos , Platycodon/química , Polisacáridos/farmacología , Polisacáridos/química , Medicina Tradicional China , Bazo , Tos
15.
Int J Biol Macromol ; 259(Pt 2): 129193, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38191106

RESUMEN

Dandelion (Taraxacum mongolicum Hand.-Mazz), as a famous medicinal and edible plant, has the effects of clearing heat and detoxifying, diuresis, and resolving masses. Phytochemistry investigations revealed that T. mongolicum has various bioactive ingredients, mainly including flavonoids, sterols, polysaccharides, phenolic acids and volatile oils. There is growing evidence have shown that the polysaccharides from T. mongolicum (TMPs) are a class of representative pharmacologically bioactive macromolecules with a variety of biological activities both in vitro and in vivo, such as immunomodulatory, anti-inflammatory, anti-oxidant, anti-tumor, hepatoprotective, hypolipidemic and hypoglycemic, anti-bacterial, regulation of intestinal microbial, and anti-fatigue activities, etc. Additionally, the structural modification and potential applications of TMPs were also outlined. The present review aims to comprehensively and systematically collate the recent research progress on extraction and purification methods, structural characteristics, biological activities, mechanism of action, structural modification, and potential industry applications of TMPs to support their therapeutic potential and health care functions. Overall, the present review provides a theoretical overview for further development and utilization of TMPs in the fields of pharmaceutical and health food.


Asunto(s)
Taraxacum , Taraxacum/química , Polisacáridos/farmacología , Polisacáridos/química , Flavonoides/química , Antioxidantes/farmacología
16.
Fitoterapia ; 172: 105744, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37952762

RESUMEN

PURPOSE: Frankincense has been shown in studies to have healing benefits for people with ulcerative colitis (UC). However, its underlying mechanisms have not been fully investigated. The objective of this study was to explore the potential molecular mechanisms of Frankincense essential oil (FREO) in improving dextran sodium sulfate (DSS)-induced UC from multiple perspectives. METHODS: The FREO components were analyzed by GC-MS, and the interactions between the key active components and the mechanism of FREO were determined based on RNA-seq, "quantity-effect" weighting coefficient network pharmacology, WGCNA and pharmacodynamic experiments. The protection of FREO against DSS-induced UC mice was assessed by behavioral and pathological changes through mice. The expression of pro-inflammatory cytokines was measured using enzyme-linked immunosorbent assay. The expression of MAPK and NF-κB-related proteins by the Western Blotting and immunohistochemistry method. RESULTS: Treatment with FREO significantly improved the symptoms of weight loss, diarrhea, stool blood, and colon shortening in UC mice. Reduced intestinal mucosal damage and the degree of inflammatory cell infiltration in the colon. Decreased TNF-α and IL-6 levels in mice's serum and inhibited phosphorylation of ERK, p65 in MAPK and NF-κB signaling. CONCLUSION: FREO may decrease the inflammatory response to reduce the symptoms of UC by modulating the MAPK/ NF-κB pathway. This may be due to the synergistic interaction of the effective ingredient Hepten-2-yl tiglate, 6-methyl-5-, Isoneocembrene A and P-Cymene. This study provides a promising drug candidate and a new concept for the treatment of UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Olíbano , Aceites Volátiles , Sulfatos , Humanos , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , FN-kappa B/metabolismo , Dextranos/metabolismo , Dextranos/farmacología , Dextranos/uso terapéutico , Olíbano/metabolismo , Olíbano/farmacología , Olíbano/uso terapéutico , Aceites Volátiles/farmacología , RNA-Seq , Modelos Animales de Enfermedad , Estructura Molecular , Sulfato de Dextran/efectos adversos , Sulfato de Dextran/metabolismo , Colon/metabolismo , Colon/patología , Ratones Endogámicos C57BL , Colitis/tratamiento farmacológico
17.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38044469

RESUMEN

Brain function changes affect cognitive functions in older adults, yet the relationship between cognition and the dynamic changes of brain networks during naturalistic stimulation is not clear. Here, we recruited the young, middle-aged and older groups from the Cambridge Center for Aging and Neuroscience to investigate the relationship between dynamic metrics of brain networks and cognition using functional magnetic resonance imaging data during movie-watching. We found six reliable co-activation pattern (CAP) states of brain networks grouped into three pairs with opposite activation patterns in three age groups. Compared with young and middle-aged adults, older adults dwelled shorter time in CAP state 4 with deactivated default mode network (DMN) and activated salience, frontoparietal and dorsal-attention networks (DAN), and longer time in state 6 with deactivated DMN and activated DAN and visual network, suggesting altered dynamic interaction between DMN and other brain networks might contribute to cognitive decline in older adults. Meanwhile, older adults showed easier transfer from state 6 to state 3 (activated DMN and deactivated sensorimotor network), suggesting that the fragile antagonism between DMN and other cognitive networks might contribute to cognitive decline in older adults. Our findings provided novel insights into aberrant brain network dynamics associated with cognitive decline.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Cognición/fisiología , Mapeo Encefálico , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología
18.
Diabetes ; 73(3): 497-510, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38127948

RESUMEN

Aldose reductase 2 (ALR2), an activated enzyme in the polyol pathway by hyperglycemia, has long been recognized as one of the most promising targets for complications of diabetes, especially in diabetic peripheral neuropathy (DPN). However, many of the ALR2 inhibitors have shown serious side effects due to poor selectivity over aldehyde reductase (ALR1). Herein, we describe the discovery of a series of benzothiadiazine acetic acid derivatives as potent and selective inhibitors against ALR2 and evaluation of their anti-DPN activities in vivo. Compound 15c, carrying a carbonyl group at the 3-position of the thiadiazine ring, showed high potent inhibition against ALR2 (IC50 = 33.19 nmol/L) and ∼16,109-fold selectivity for ALR2 over ALR1. Cytotoxicity assays ensured the primary biosafety of 15c. Further pharmacokinetic assay in rats indicated that 15c had a good pharmacokinetic feature (t1/2 = 5.60 h, area under the plasma concentration time curve [AUC(0-t)] = 598.57 ± 216.5 µg/mL * h), which was superior to epalrestat (t1/2 = 2.23 h, AUC[0-t] = 20.43 ± 3.7 µg/mL * h). Finally, in a streptozotocin-induced diabetic rat model, 15c significantly increased the nerve conduction velocities of impaired sensory and motor nerves, achieved potent inhibition of d-sorbitol production in the sciatic nerves, and significantly increased the paw withdrawal mechanical threshold. By combining the above investigations, we propose that 15c might represent a promising lead compound for the discovery of an antidiabetic peripheral neuropathy drug.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Hiperglucemia , Ratas , Animales , Neuropatías Diabéticas/tratamiento farmacológico , Aldehído Reductasa/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Tiazidas , Benzotiadiazinas
19.
Huan Jing Ke Xue ; 44(11): 6205-6214, 2023 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-37973103

RESUMEN

Sediment microorganisms are the main drivers of the material circulation and organic matter degradation processes in rural black and odorous water bodies(RBOWB), and the community structure of sediment microorganisms follows the changes in the external environment. Here, the pollutant indicators, including nitrogen, phosphorus, and heavy metals in the overlying water and sediment of 29 RBOWB in Dongming County of Heze City were measured, respectively. Combined with Illumina sequencing results, the composition and diversity characteristics of sediment bacterial communities in RBOWB and their correlation with environmental factors were further analyzed. The experimental results showed a wide distribution of pollutants in both of the overlying water and sediment in the RBOWB of this region. Compared with agricultural non-point source pollution, the concentrations of nitrogen and phosphorus pollutants in the overlying water with domestic sewage as the main source of pollution were 3.1 and 1.5 times higher than those of agricultural non-point source pollution, respectively. In addition, the contents of heavy metals in the sediments of RBOWB were generally lower than the soil element background value in Heze City. The dominant bacteria phyla in the sediments of the RBOWB were Proteobacteria, Actinobacteria, Chloroflexi, Firmicutes, and Acidobacteria, and the total abundance of these five dominant phyla accounted for 70.3%-83.6% of all sequences. The dominant classes were γ-Proteobacteria, α-Proteobacteria, Anaerolineae, and Actinobacteria. The dominant genera were Thiobacillus and Pseudarthrobacter. Moreover, Spearman correlation analysis showed that the environmental factors of DO, COD, TN, TP, and organic matter exerted significant effects(P<0.05) on sediment bacterial genera in RBOWB, and sediment bacterial community richness was significantly influenced by TN(P<0.05). The above results provided the microbiological knowledge for treating RBOWB.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Agua/análisis , Bacterias/genética , Metales Pesados/análisis , Contaminantes Ambientales/análisis , Nitrógeno/análisis , Fósforo/análisis , Sedimentos Geológicos/química , China
20.
Int J Nanomedicine ; 18: 4275-4311, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37534056

RESUMEN

Breast cancer (BC) is the most prevalent type of cancer in the world and the main reason women die from cancer. Due to the significant side effects of conventional treatments such as chemotherapy and radiotherapy, the search for supplemental and alternative natural drugs with lower toxicity and side effects is of interest to researchers. Curcumin (CUR) is a natural polyphenol extracted from turmeric. Numerous studies have demonstrated that CUR is an effective anticancer drug that works by modifying different intracellular signaling pathways. CUR's therapeutic utility is severely constrained by its short half-life in vivo, low water solubility, poor stability, quick metabolism, low oral bioavailability, and potential for gastrointestinal discomfort with high oral doses. One of the most practical solutions to the aforementioned issues is the development of targeted drug delivery systems (TDDSs) based on nanomaterials. To improve drug targeting and efficacy and to serve as a reference for the development and use of CUR TDDSs in the clinical setting, this review describes the physicochemical properties and bioavailability of CUR and its mechanism of action on BC, with emphasis on recent studies on TDDSs for BC in combination with CUR, including passive TDDSs, active TDDSs and physicochemical TDDSs.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Curcumina , Femenino , Humanos , Curcumina/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Antineoplásicos/farmacología , Solubilidad , Portadores de Fármacos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...