Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 174: 116586, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626516

RESUMEN

Cancer treatment is presently a significant challenge in the medical domain, wherein the primary modalities of intervention include chemotherapy, radiation therapy and surgery. However, these therapeutic modalities carry side effects. Photothermal therapy (PTT) and photodynamic therapy (PDT) have emerged as promising modalities for the treatment of tumors in recent years. Phototherapy is a therapeutic approach that involves the exposure of materials to specific wavelengths of light, which can subsequently be converted into either heat or Reactive Oxygen Species (ROS) to effectively eradicate cancer cells. Due to the hydrophobicity and lack of targeting of many photoresponsive materials, the use of nano-carriers for their transportation has been extensively explored. Among these nanocarriers, liposomes have been identified as an effective drug delivery system due to their controllability and availability in the biomedical field. By binding photoresponsive materials to liposomes, it is possible to reduce the cytotoxicity of the material and regulate drug release and accumulation at the tumor site. This article provides a comprehensive review of the progress made in cancer therapy using photoresponsive materials loaded onto liposomes. Additionally, the article discusses the potential synergistic treatment through the combination of phototherapy with chemo/immuno/gene therapy using liposomes.


Asunto(s)
Liposomas , Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Animales , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos/métodos , Fototerapia/métodos , Terapia Fototérmica/métodos
2.
Fitoterapia ; 175: 105921, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38561052

RESUMEN

Sophoridine, which is derived from the Leguminous plant Sophora alopecuroides L., has certain pharmacological activity as a new anticancer drug. Herein, a series of novel N-substituted sophoridine derivatives was designed, synthesized and evaluated with anticancer activity. Through QSAR prediction models, it was discovered that the introduction of a benzene ring as a main pharmacophore and reintroduced into a benzene in para position on the phenyl ring in the novel sophoridine derivatives improved the anticancer activity effectively. In vitro, 28 novel compounds were evaluated for anticancer activity against four human tumor cell lines (A549, CNE-2, HepG-2, and HEC-1-B). In particular, Compound 26 exhibited remarkable inhibitory effects, with an IC50 value of 15.6 µM against HepG-2 cells, surpassing cis-Dichlorodiamineplatinum (II). Molecular docking studies verified that the derivatives exhibit stronger binding affinity with DNA topoisomerase I compared to sophoridine. In addition, 26 demonstrated significant inhibition of DNA Topoisomerase I and could arrest cells in G0/G1 phase. This study provides valuable insights into the design and synthesis of N-substituted sophoridine derivatives with anticancer activity.


Asunto(s)
Alcaloides , Matrinas , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa , Quinolizinas , Sophora , Inhibidores de Topoisomerasa I , Humanos , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/síntesis química , Quinolizinas/farmacología , Quinolizinas/síntesis química , Quinolizinas/química , Estructura Molecular , Sophora/química , Alcaloides/farmacología , Alcaloides/síntesis química , Alcaloides/química , Línea Celular Tumoral , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/síntesis química , Indolizinas/farmacología , Indolizinas/química , Indolizinas/síntesis química , ADN-Topoisomerasas de Tipo I/metabolismo , Fitoquímicos/farmacología , Fitoquímicos/síntesis química
3.
Curr Pharm Des ; 29(25): 1975-1991, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37644796

RESUMEN

Human health is significantly threatened by infectious diseases caused by viral infection. Over the years, there have been numerous virus epidemics worldwide, causing millions of deaths. Traditional antiviral medications have many problems, including poor solubility and antiviral resistance. Additionally, because different drug delivery methods have different biological barriers to overcome, the drug's bioavailability will be significantly affected. Therefore, it is essential that researchers create more effective antiviral drugs. To serve as a guide for the future development of nanosized antiviral drugs with stronger and more precise therapeutic effects, research has been performed on nanotechnology in the field of antiviral therapy. This review summarizes the recent developments in antiviral nanopharmaceuticals with different delivery routes. Research on 7 typical viruses, including COVID-19, has been included in this review. After being loaded into nanoparticles, antiviral drugs can be delivered through several drug modes of delivery, overcoming biological barriers. Moreover, some nanoparticles themselves have the ability to combat infections, so they can be used in conjunction with antiviral medication. The use of nanoparticle medications through various routes of administration can result in their unique benefits. They can be capable of overcoming its limitations as well as retaining the advantages of this method of delivery. This will motivate researchers to conducted a new investigation on nanoparticle medicines from the standpoint of the route of administration in order to increase the practicability of antiviral medications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA