Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Water Res ; 262: 122066, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39029395

RESUMEN

Dissolved organic matter (DOM) is a widely occurring substance in rivers that can strongly complex with heavy metal ions (HMIs), severely interfering with the electrochemical signal of anodic stripping voltammetry (ASV) and reducing the detection accuracy of HMIs in water. In this study, we investigated a novel advanced oxidation process (AOP) that involves the activation of peroxymonosulfate (PMS) using low-pressure ultraviolet (LPUV) radiation and CoFe2O4 photocatalysis. This novel AOP was used for the first time as an effective pretreatment method to break or weaken the complexation between HMIs and DOM, thereby restoring the electrochemical signals of HMIs. The key parameters, including the PMS concentration, CoFe2O4 concentration, and photolysis time, were optimized to be 6 mg/L, 12 mg/L, and 30 s for eliminating DOM interference during the electrochemical analysis of HMIs via LPUV/CoFe2O4-based photolysis. Investigations of the microstructure, surface morphology, specific surface area, and pore volume of CoFe2O4 were conducted to reveal the exceptional signal recovery capability of LPUV/CoFe2O4/PMS-based photolysis in mitigating interference from DOM during HMIs analysis. The PMS activation mechanism, which is critical to the signal recovery process, was elucidated by analyzing the reactive oxygen species (ROS) and the surface elemental composition of CoFe2O4. Additionally, the degradation and transformation behavior of humus-HMIs complexes were analyzed to study the mechanism of ASV signal recovery further. Notably, the detection results of HMIs in actual water samples obtained using the proposed pretreatment method were compared with those obtained from ICP-MS, yielding an RMSE less than 0.04 µg/L, which indicated the satisfactory performance of the proposed pretreatment method for the ASV detection of HMIs in complex actual samples.

2.
Adv Biol (Weinh) ; : e2400242, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037400

RESUMEN

Erythrocytes, also known as red blood cells (RBCs), have garnered considerable attention as potential carriers for drug delivery, owing to their inherent properties such as biocompatibility, biodegradability, and prolonged circulation half-life. This paper presents a comprehensive overview of the role of erythrocytes in drug delivery, elucidating recent advancements in delivering a diverse array of therapeutic agents, including small molecules, nucleic acids, antibodies, protein enzymes, and nanoparticles. Two primary strategies for encapsulating drugs within erythrocytes are systematically discussed: internal loading and surface loading. Each strategy offers distinct advantages in terms of drug stability and release kinetics. Notably, the utilization of erythrocyte membrane camouflaged nanocarriers holds promise for enhancing the biocompatibility of conventional nanoparticles and facilitating targeted drug delivery. Furthermore, the broad spectrum of biomedical applications of erythrocyte-based drug delivery systems are examined, ranging from cancer treatment to diabetes management, thrombosis prevention, and immunotherapy. This review provides a comprehensive evaluation of current technologies in erythrocyte-loaded drug delivery, highlighting the strengths, weaknesses, and future directions for advancing therapeutic interventions in various disease contexts.

3.
Oral Dis ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937974

RESUMEN

OBJECTIVES: Current scales for Pemphigus vulgaris (PV) do not adequately represent the clinical variability of oral lesions. This study aimed to develop an independent scale, the Pemphigus Oral Lesions Area Index (POLAI), for assessment of oral PV exclusively, and compare POLAI, Pemphigus Disease Area Index (PDAI), Autoimmune Bullous Skin Disorder Intensity Score (ABSIS) and Oral Disease Severity Score (ODSS) regarding inter- and intra-observer reliability and validity. MATERIALS AND METHODS: Retrospective cohort included 209 sets of digital-photographs. Additional clinical cohort included 32 PV patients. All visits were assessed by four clinicians using the PDAI, ABSIS, ODSS and POLAI, and were rated by three specialists using the Physician's Global Assessment (PGA). RESULTS: The intraclass correlation coefficient showed the inter-observer reliability with 0.89 and 0.86 for PDAI, 0.87 for ABSIS, 0.93 for ODSS, 0.96 for POLAI, and 0.97 and 0.96 for PGA. Intra-observer agreements showed excellent reliability for all 4 scores. Highest correlation was observed between PGA and POLAI (correlation coefficients were 0.96). The mean time taken to complete each scale was within 1.5 min. CONCLUSION: POLAI is valid for the assessment of oral PV with superior inter- and intra-observer reliability to PDAI, ABSIS and ODSS, and is feasible in clinic.

4.
Int J Biol Sci ; 20(7): 2686-2697, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725852

RESUMEN

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. Breast cancer stem cells (BCSCs) are believed to play a crucial role in the carcinogenesis, therapy resistance, and metastasis of TNBC. It is well known that inflammation promotes stemness. Several studies have identified breast cancer-associated gene 2 (BCA2) as a potential risk factor for breast cancer incidence and prognosis. However, whether and how BCA2 promotes BCSCs has not been elucidated. Here, we demonstrated that BCA2 specifically promotes lipopolysaccharide (LPS)-induced BCSCs through LPS induced SOX9 expression. BCA2 enhances the interaction between myeloid differentiation primary response protein 88 (MyD88) and Toll-like receptor 4 (TLR4) and inhibits the interaction of MyD88 with deubiquitinase OTUD4 in the LPS-mediated NF-κB signaling pathway. And SOX9, an NF-κB target gene, mediates BCA2's pro-stemness function in TNBC. Our findings provide new insights into the molecular mechanisms by which BCA2 promotes breast cancer and potential therapeutic targets for the treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Células Madre Neoplásicas , Factor de Transcripción SOX9 , Ubiquitina-Proteína Ligasas , Femenino , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Lipopolisacáridos/farmacología , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Células Madre Neoplásicas/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Regulación hacia Arriba
5.
Dentomaxillofac Radiol ; 53(5): 271-280, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38814810

RESUMEN

Cystic lesions of the gnathic bones present challenges in differential diagnosis. In recent years, artificial intelligence (AI) represented by deep learning (DL) has rapidly developed and emerged in the field of dental and maxillofacial radiology (DMFR). Dental radiography provides a rich resource for the study of diagnostic analysis methods for cystic lesions of the jaws and has attracted many researchers. The aim of the current study was to investigate the diagnostic performance of DL for cystic lesions of the jaws. Online searches were done on Google Scholar, PubMed, and IEEE Xplore databases, up to September 2023, with subsequent manual screening for confirmation. The initial search yielded 1862 titles, and 44 studies were ultimately included. All studies used DL methods or tools for the identification of a variable number of maxillofacial cysts. The performance of algorithms with different models varies. Although most of the reviewed studies demonstrated that DL methods have better discriminative performance than clinicians, further development is still needed before routine clinical implementation due to several challenges and limitations such as lack of model interpretability, multicentre data validation, etc. Considering the current limitations and challenges, future studies for the differential diagnosis of cystic lesions of the jaws should follow actual clinical diagnostic scenarios to coordinate study design and enhance the impact of AI in the diagnosis of oral and maxillofacial diseases.


Asunto(s)
Aprendizaje Profundo , Quistes Maxilomandibulares , Humanos , Quistes Maxilomandibulares/diagnóstico por imagen , Diagnóstico Diferencial , Enfermedades Maxilomandibulares/diagnóstico por imagen
6.
Nat Biomed Eng ; 8(5): 499-512, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693431

RESUMEN

Bispecific T-cell engagers (BiTEs) bring together tumour cells and cytotoxic T cells by binding to specific cell-surface tumour antigens and T-cell receptors, and have been clinically successful for the treatment of B-cell malignancies. Here we show that a BiTE-sialidase fusion protein enhances the susceptibility of solid tumours to BiTE-mediated cytolysis of tumour cells via targeted desialylation-that is, the removal of terminal sialic acid residues on glycans-at the BiTE-induced T-cell-tumour-cell interface. In xenograft and syngeneic mouse models of leukaemia and of melanoma and breast cancer, and compared with the parental BiTE molecules, targeted desialylation via the BiTE-sialidase fusion proteins enhanced the formation of immunological synapses, T-cell activation and T-cell-mediated tumour-cell cytolysis in the presence of the target antigen. The targeted desialylation of tumour cells may enhance the potency of therapies relying on T-cell engagers.


Asunto(s)
Neuraminidasa , Animales , Neuraminidasa/metabolismo , Humanos , Ratones , Línea Celular Tumoral , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Linfocitos T/inmunología , Femenino , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología , Activación de Linfocitos , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/química , Ensayos Antitumor por Modelo de Xenoinjerto , Linfocitos T Citotóxicos/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología
7.
Plants (Basel) ; 13(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38794460

RESUMEN

Glycosylation is catalyzed by UDP-glycosyltransferase (UGT) and plays an important role in enriching the diversity of flavonoids. Rubus plants contain a lot of natural flavonoid glycosides, which are important plants with a homology of medicine and food. However, information about the Rubus UGT gene family is very limited. In this study, we carried out genome-wide analysis and identified the 172, 121, 130, 121 UGT genes in R. chingii, R. corchorifolius, R. idaeus, and R. occidentalis, respectively, and divided them into 18 groups. The analysis of the protein motif and gene structure showed that there were structural and functional conservations in the same group, but there were differences among different groups. Gene replication analysis showed that raspberry and dicotyledons had a higher homology. The expansion of the UGTs gene family was mainly driven by tandem replication events, and experienced purified selection during the long evolution of the raspberry. Cis-acting element analysis showed that they were related to plant growth and development, hormone regulation, and stress response. In addition, according to a comprehensive analysis of the co-expression network constructed by transcriptome data and phylogenetic homology, RchUGT169 was identified as a flavonoid glucosyltransferase. Through the transient expression in tobacco, it was verified that RchUGT169 could catalyze the conversion of kaempferol and quercetin to the corresponding flavonoid glycosides. In conclusion, this research enriched the understanding of the diversity of UGTs in Rubus and determined that RcUGT169 can catalyze flavonoids.

8.
Free Radic Biol Med ; 219: 163-179, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38615890

RESUMEN

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) is one of the liver illnesses that may be affected by mitophagy, which is the selective removal of damaged mitochondria. RNF31, an E3 ubiquitin ligase, is carcinogenic in many malignancies. However, the influence of RNF31 on mitochondrial homeostasis and NAFLD development remains unknown. METHODS: Oleic-palmitic acid treated hepatocytes and high-fat diet (HFD)-fed mice were established to observe the effect of RNF31 on hepatocyte mitophagy and steatosis. Mitophagy processes were comprehensively assessed by mt-Keima fluorescence imaging, while global changes in hepatic gene expression were measured by RNA-seq. RESULTS: The present study discovered a reduction in RNF31 expression in lipotoxic hepatocytes with mitochondrial dysfunction. The observed decrease in RNF31 expression was associated with reduced mitochondrial membrane potential, disturbed mitophagy, and increased steatosis. Additionally, the findings indicated that RNF31 is a pivotal factor in the initiation of mitophagy and the facilitation of mitochondrial homeostasis, resulting in a decrease in steatosis in lipotoxic hepatocytes. Mechanistically, RNF31 enhanced p53 ubiquitination and subsequent proteasomal degradation. Down-regulation of p53 led to increased expression of the mitophagy receptor protein BCL2 and adenovirus E1B 19 kDa-interacting protein 3 (BNIP3), thereby promoting mitophagy in hepatocytes. Furthermore, it was demonstrated that the transportation of RNF31 via small extracellular vesicles derived from mesenchymal stem cells (referred to as sEV) had a substantial influence on reducing hepatic steatosis and restoring liver function in HFD-fed mice. CONCLUSIONS: The findings highlight RNF31's essential role in the regulation of mitochondrial homeostasis in hepatocytes, emphasizing its potential as a therapeutic target for NAFLD.


Asunto(s)
Dieta Alta en Grasa , Hepatocitos , Proteínas de la Membrana , Mitofagia , Enfermedad del Hígado Graso no Alcohólico , Proteína p53 Supresora de Tumor , Ubiquitina-Proteína Ligasas , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Hepatocitos/metabolismo , Hepatocitos/patología , Potencial de la Membrana Mitocondrial , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Mitofagia/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
9.
Int Immunopharmacol ; 132: 111999, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38581994

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a heterogeneous group of lung diseases with different etiologies and characterized by progressive fibrosis. This disease usually causes pulmonary structural remodeling and decreased pulmonary function. The median survival of IPF patients is 2-5 years. Predominantly accumulation of type II innate immune cells accelerates fibrosis progression by secreting multiple pro-fibrotic cytokines. Group 2 innate lymphoid cells (ILC2) and monocytes/macrophages play key roles in innate immunity and aggravate the formation of pro-fibrotic environment. As a potent immunosuppressant, tacrolimus has shown efficacy in alleviating the progression of pulmonary fibrosis. In this study, we found that tacrolimus is capable of suppressing ILC2 activation, monocyte differentiation and the interaction of these two cells. This effect further reduced activation of monocyte-derived macrophages (Mo-M), thus resulting in a decline of myofibroblast activation and collagen deposition. The combination of tacrolimus and nintedanib was more effective than either drug alone. This study will reveal the specific process of tacrolimus alleviating pulmonary fibrosis by regulating type II immunity, and explore the potential feasibility of tacrolimus combined with nintedanib in the treatment of pulmonary fibrosis. This project will provide new ideas for clinical optimization of anti-pulmonary fibrosis drug strategies.


Asunto(s)
Fibrosis Pulmonar Idiopática , Inmunosupresores , Ratones Endogámicos C57BL , Monocitos , Tacrolimus , Tacrolimus/uso terapéutico , Tacrolimus/farmacología , Animales , Monocitos/efectos de los fármacos , Monocitos/inmunología , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/inmunología , Fibrosis Pulmonar Idiopática/patología , Ratones , Inmunosupresores/uso terapéutico , Inmunosupresores/farmacología , Humanos , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Inmunidad Innata/efectos de los fármacos , Indoles/uso terapéutico , Indoles/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Progresión de la Enfermedad , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Células Cultivadas , Masculino , Citocinas/metabolismo , Miofibroblastos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad
10.
Mol Phylogenet Evol ; 196: 108072, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38615706

RESUMEN

While the diversity of species formation is broadly acknowledged, significant debate exists regarding the universal nature of hybrid species formation. Through an 18-year comprehensive study of all Populus species on the Qinghai-Tibet Plateau, 23 previously recorded species and 8 new species were identified. Based on morphological characteristics, these can be classified into three groups: species in section Leucoides, species with large leaves, and species with small leaves in section Tacamahaca. By conducting whole-genome re-sequencing of 150 genotypes from these 31 species, 2.28 million single nucleotide polymorphisms (SNPs) were identified. Phylogenetic analysis utilizing these SNPs not only revealed a highly intricate evolutionary network within the large-leaf species of section Tacamahaca but also confirmed that a new species, P. curviserrata, naturally hybridized with P. cathayana, P. szechuanica, and P. ciliata, resulting in 11 hybrid species. These findings indicate the widespread occurrence of hybrid species formation within this genus, with hybridization serving as a key evolutionary mechanism for Populus on the plateau. A novel hypothesis, "Hybrid Species Exterminating Their Ancestral Species (HSEAS)," is introduced to explain the mechanisms of hybrid species formation at three different scales: the entire plateau, the southeastern mountain region, and individual river valleys.


Asunto(s)
Especiación Genética , Hibridación Genética , Filogenia , Polimorfismo de Nucleótido Simple , Populus , Populus/genética , Populus/clasificación , Tibet
11.
J Pharm Pharmacol ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530642

RESUMEN

OBJECTIVES: Several studies have shown that propofol administration during surgery effectively attenuates remifentanil-induced hyperalgesia (RIH). Ciprofol, a novel intravenous sedative agent analogous to propofol, has not yet been proven efficacious in alleviating RIH. The present study aimed to investigate the effect of ciprofol on RIH and the possible mechanisms involved. METHODS: The RIH model was established by an infusion of remifentanil (1 µg·kg-1·min-1) 60 min in rats with incisional pain. Ciprofol (0.1, 0.25, and 0.4 mg·kg-1·min-1) was simultaneously infused to evaluate its effect on RIH. The antinociception of ciprofol was verified by measured paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL). γ-aminobutyric acid type A receptor α2 subunit (α2GABAAR), N-methyl-d-aspartate receptor NR2B subunit (NR2B), calcium/calmodulin-dependent protein kinase II α (CaMKIIα), and phosphorylated CaMKIIα (P-CaMKIIα) in the spinal cord and hippocampus of rats were assessed by western blotting and immunohistochemistry. KEY FINDINGS: The results showed that ciprofol dose-dependently increased PWMT and PWTL values in RIH rats. Moreover, ciprofol upregulated α2GABAAR and downregulated NR2B and P-CaMKIIα in the rat spinal cord and hippocampus. CONCLUSIONS: Ciprofol alleviates RIH effectively, and the anti-hyperalgesic mechanisms may involve increasing α2GABAAR levels and decreasing NR2B and P-CaMKIIα levels in the spinal cord and hippocampus.

12.
ACS Nano ; 18(11): 8125-8142, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38451090

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease characterized by progressive erosion of the articular cartilage and inflammation. Mesenchymal stem cells' (MSCs) transplantation in OA treatment is emerging, but its clinical application is still limited by the low efficiency in oriented differentiation. In our study, to improve the therapeutic efficiencies of MSCs in OA treatment by carbonic anhydrase IX (CA9) siRNA (siCA9)-based inflammation regulation and Kartogenin (KGN)-based chondrogenic differentiation, the combination strategy of MSCs and the nanomedicine codelivering KGN and siCA9 (AHK-CaP/siCA9 NPs) was used. In vitro results demonstrated that these NPs could improve the inflammatory microenvironment through repolarization of M1 macrophages to the M2 phenotype by downregulating the expression levels of CA9 mRNA. Meanwhile, these NPs could also enhance the chondrogenesis of bone marrow-derived mesenchymal stem cells (BMSCs) by upregulating the pro-chondrogenic TGF-ß1, ACAN, and Col2α1 mRNA levels. Moreover, in an advanced OA mouse model, compared with BMSCs alone group, the lower synovitis score and OARSI score were found in the group of BMSCs plus AHK-CaP/siCA9 NPs, suggesting that this combination approach could effectively inhibit synovitis and promote cartilage regeneration in OA progression. Therefore, the synchronization of regulating the inflammatory microenvironment through macrophage reprogramming (CA9 gene silencing) and promoting MSCs oriented differentiation through a chondrogenic agent (KGN) may be a potential strategy to maximize the therapeutic efficiency of MSCs for OA treatment.


Asunto(s)
Cartílago Articular , Células Madre Mesenquimatosas , Osteoartritis , Sinovitis , Ratones , Animales , Condrogénesis , Nanomedicina , Osteoartritis/tratamiento farmacológico , Diferenciación Celular , Inflamación/metabolismo , Sinovitis/metabolismo , ARN Mensajero/metabolismo
13.
Genes (Basel) ; 15(3)2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38540322

RESUMEN

Lindera aggregata is a species of the Lauraceae family, which has important medicinal, economic and ornamental values. In this study, we sequenced, assembled and annotated the chloroplast genome of L. aggregata and reannotated and corrected eight unverified annotations in the same genus. The chloroplast genomes taxa from Lindera and from different genera of Lauraceae were compared and analyzed, and their phylogenetic relationship and divergence time were speculated. All the 36 chloroplast genomes had typical quadripartite structures that ranged from 150,749 to 154,736 bp in total length. These genomes encoded 111-112 unique genes, including 78-79 protein-coding genes, 29-30 tRNA and 4 rRNA. Furthermore, there were 78-97 SSRs loci in these genomes, in which mononucleotide repeats were the most abundant; there were 24-49 interspersed repeats, and forward repeat types were the most frequent. The codon bias patterns of all species tended to use codons ending with A or U. Five and six highly variable regions were identified within genus and between genera, respectively, and three common regions (ycf1, ndhF-rpl32 and rpl32-trnL) were identified, which can be used as important DNA markers for phylogeny and species identification. According to the evaluation of the Ka/Ks ratio, most of the genes were under purifying selection, and only 10 genes were under positive selection. Finally, through the construction of the evolutionary tree of 39 chloroplast genomes, the phylogenetic relationship of Lauraceae was clarified and the evolutionary relationship of Lindera was revealed. The species of genus Lindera experienced rapid adaptive radiation from Miocene to Pleistocene. The results provided valuable insights for the study of chloroplast genomes in the Lauraceae family, especially in the genus Lindera.


Asunto(s)
Genoma del Cloroplasto , Lindera , Filogenia , Lindera/genética , Genoma del Cloroplasto/genética , Evolución Biológica , Marcadores Genéticos
14.
J Hazard Mater ; 469: 133760, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38522206

RESUMEN

This study aimed to assess the global spatiotemporal variations of trihalomethanes (THMs) in drinking water, evaluate their cancer and non-cancer risks, and THM-attributable bladder cancer burden. THM concentrations in drinking water around fifty years on a global scale were integrated. Health risks were assessed using Monte Carlo simulations and attributable bladder cancer burden was estimated by comparative risk assessment methodology. The results showed that global mean THM concentrations in drinking water significantly decreased from 78.37 µg/L (1973-1983) to 51.99 µg/L (1984-2004) and to 21.90 µg/L (after 2004). The lifestage-integrative cancer risk and hazard index of THMs through all exposure pathways were acceptable with the average level of 6.45 × 10-5 and 7.63 × 10-2, respectively. The global attributable disability adjusted of life years (DALYs) and the age-standardized DALYs rate (ASDR) dropped by 16% and 56% from 1990-1994 to 2015-2019, respectively. A big decline in the attributable ASDR was observed in the United Kingdom (62%) and the United States (27%), while China experienced a nearly 3-fold increase due to the expanded water supply coverage and increased life expectancy. However, China also benefited from the spread of chlorination, which helped reduce nearly 90% of unsafe-water-caused mortality from 1998 to 2018.


Asunto(s)
Agua Potable , Neoplasias de la Vejiga Urinaria , Contaminantes Químicos del Agua , Humanos , Trihalometanos/toxicidad , Trihalometanos/análisis , Neoplasias de la Vejiga Urinaria/inducido químicamente , Neoplasias de la Vejiga Urinaria/epidemiología , Costo de Enfermedad , Medición de Riesgo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
15.
J Bone Miner Res ; 39(3): 326-340, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38477820

RESUMEN

Proteasome activator subunit 3 (PA28γ) is a member of the proteasome activator family, which mainly regulates the degradation and stability of proteins. Studies have shown that it plays crucial roles in lipid formation, stemness maintenance, and blood vessel formation. However, few studies have clarified the association between PA28γ and bone diseases. Herein, we identified PA28γ as a previously unknown regulator of bone homeostasis that coordinates bone formation and lipid accumulation. PA28γ-knockout mice presented with the characteristics of low bone mass and accumulation of lipids. Suppressed expression of PA28γ restrained the osteogenic differentiation and enhanced the adipogenic differentiation of bone marrow stromal cells (BMSCs). Overexpression of PA28γ promoted osteogenic differentiation and inhibited adipogenic differentiation of BMSCs. Mechanistically, PA28γ interacted with Wnt5α, and the two interactors appeared to be positively correlated. PA28γ mainly activated the downstream Wnt/ß-catenin signaling pathway, which affects BMSCs differentiation homeostasis. Deletion of Wnt5α significantly delayed the promotion of osteogenic differentiation and partially alleviated the inhibitory effect of adipogenic differentiation of BMSCs in the PA28γ-overexpressing group. Furthermore, we demonstrated that PA28γ-knockout mice had an inhibited rate of bone healing in a drill-hole femoral bone defect model in vivo. Therefore, our results confirm the effects of PA28γ on bone formation and bone defect repair, indicating that PA28γ mainly interacts with Wnt5α to activate the Wnt/ß-catenin signaling pathway regulating BMSCs differentiation homeostasis. Our results reveal the function of PA28γ in bone diseases and provide a new theoretical basis for expanding the treatment of bone diseases.


Asunto(s)
Autoantígenos , Enfermedades Óseas , Células Madre Mesenquimatosas , Ratones , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Osteogénesis , beta Catenina/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Vía de Señalización Wnt/fisiología , Enfermedades Óseas/metabolismo , Células de la Médula Ósea/metabolismo , Células Cultivadas , Ratones Noqueados , Lípidos
16.
Sci Prog ; 107(1): 368504241236345, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38490169

RESUMEN

The accurate identification of dynamic change of limb length discrepancy (LLD) in non-clinical settings is of great significance for monitoring gait function change in people's everyday lives. How to search for advanced techniques to measure LLD changes in non-clinical settings has always been a challenging endeavor in recent related research. In this study, we have proposed a novel approach to accurately measure the dynamic change of LLD outdoors by using deep learning and wearable sensors. The basic idea is that the measurement of dynamic change of LLD was considered as a multiple gait classification task based on LLD change that is clearly associated with its gait pattern. A hybrid deep learning model of convolutional neural network and long short-term memory (CNN-LSTM) was developed to precisely classify LLD gait patterns by discovering the most representative spatial-temporal LLD dynamic change features. Twenty-three healthy subjects were recruited to simulate four levels of LLD by wearing a shoe lift with different heights. The Delsys TrignoTM system was implemented to simultaneously acquire gait data from six sensors positioned on the hip, knee and ankle joint of two lower limbs respectively. The experimental results showed that the developed CNN-LSTM model could reach a higher accuracy of 93.24% and F1-score of 93.48% to classify four different LLD gait patterns when compared with CNN, LSTM, and CNN-gated recurrent unit(CNN-GRU), and gain better recall and precision (more than 92%) to detect each LLD gait pattern accurately. Our model could achieve excellent learning ability to discover the most representative LLD dynamic change features for classifying LLD gait patterns accurately. Our technical solution would help not only to accurately measure LLD dynamic change in non-clinical settings, but also to potentially find out lower limb joints with more abnormal compensatory change caused by LLD.


Asunto(s)
Aprendizaje Profundo , Dispositivos Electrónicos Vestibles , Humanos , Diferencia de Longitud de las Piernas/diagnóstico , Diferencia de Longitud de las Piernas/etiología , Marcha , Articulación de la Rodilla
17.
Cell Chem Biol ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38508196

RESUMEN

Immunology was one of the first biological fields to embrace chemical approaches. The development of new chemical approaches and techniques has provided immunologists with an impressive arsenal of tools to address challenges once considered insurmountable. This review focuses on advances at the interface of chemistry and immunobiology over the past two decades that have not only opened new avenues in basic immunological research, but also revolutionized drug development for the treatment of cancer and autoimmune diseases. These include chemical approaches to understand and manipulate antigen presentation and the T cell priming process, to facilitate immune cell trafficking and regulate immune cell functions, and therapeutic applications of chemical approaches to disease control and treatment.

18.
Plants (Basel) ; 13(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38337963

RESUMEN

Improving fruit size or weight, firmness, and shelf life is a major target for horticultural crop breeding. It is associated with the depolymerization and rearrangement of cell components, including pectin, hemicellulose, cellulose, and other structural (glyco)proteins. Expansins are structural proteins to loosen plant cell wall polysaccharides in a pH-dependent manner and play pivotal roles in the process of fruit development, ripening, and softening. Rubus chingii Hu, a unique Chinese red raspberry, is a prestigious pharmaceutical and nutraceutical dual-function food with great economic value. Thirty-three RchEXPs were predicted by genome-wide identification in this study, containing twenty-seven α-expansins (EXPAs), three ß-expansins (EXPBs), one expansin-like A (EXPLA), and two expansin-like B (EXPLBs). Subsequently, molecular characteristics, gene structure and motif compositions, phylogenetic relationships, chromosomal location, collinearity, and regulatory elements were further profiled. Furthermore, transcriptome sequencing (RNA-seq) and real-time quantitative PCR assays of fruits from different developmental stages and lineages showed that the group of RchEXPA5, RchEXPA7, and RchEXPA15 were synergistically involved in fruit expanding and ripening, while another group of RchEXPA6 and RchEXPA26 might be essential for fruit ripening and softening. They were regulated by both abscisic acid and ethylene and were collinear with phylogenetic relationships in the same group. Our new findings laid the molecular foundation for improving the fruit texture and shelf life of R. chingii medicinal and edible fruit.

19.
Small ; 20(24): e2311180, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38174602

RESUMEN

The practical application of the room-temperature sodium-sulfur (RT Na-S) batteries is currently limited by low reversible capacity and serious capacity decay due to the sluggish reaction kinetics and shuttle effect. It is necessary to design a suitable sulfur host integrated with electrocatalysts to realize effective chemisorption and catalysis of sodium polysulfides (NaPSs). Herein, under the guidance of theoretical calculation, the Mott-Schottky heterojunction with a built-in electric field composed of iron (Fe) and iron disulfide (FeS2) components anchored on a porous carbon matrix (Fe/FeS2-PC) is designed and prepared. The enhanced chemisorption effect of Fe, the fast electrocatalytic effect of FeS2, and the fast transfer effect of the built-in electric field within the Fe/FeS2 heterojunction in the cathode of RT Na-S batteries work together to effectively improve the electrochemical performance. As a result, the Fe/FeS2-PC@S cathode exhibits high reversible capacity (815 mAh g-1 after 150 cycles at 0.2 A g-1) and excellent stability (516 mAh g-1 after 600 cycles at 5 A g-1, with only 0.07% decay per cycle). The design of the Fe/FeS2 heterojunction electrocatalyst provides a new strategy for the development of highly stable RT Na-S batteries.

20.
Adv Sci (Weinh) ; 11(13): e2306792, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38288517

RESUMEN

This investigation addresses the challenge of suboptimal unnatural amino acid (UAA) utilization in the site-specific suppression of nonsense mutations through genetic code expansion, which is crucial for protein restoration and precise property tailoring. A facile and economical oral liquid formulation is developed by converting UAAs into ionic liquids, significantly enhancing their bioavailability and tissue accumulation. Empirical data reveal a 10-fold increase in bioavailability and up to a 13-fold rise in focal tissue accumulation, alongside marked improvements in UAA incorporation efficiency. A 4-week oral administration in mdx mice, a model for Duchenne muscular dystrophy (DMD), demonstrates the formulation's unprecedented therapeutic potential, with up to 40% dystrophin expression restoration and 75% recovery of normal fiber functions, surpassing existing treatments and exhibiting substantial long-term safety. This study presents a potent oral dosage form that dramatically improves UAA incorporation into target proteins in vivo, offering a significant advance in the treatment of nonsense mutation-mediated disorders and holding considerable promise for clinical translation.


Asunto(s)
Líquidos Iónicos , Distrofia Muscular de Duchenne , Animales , Ratones , Codón sin Sentido/genética , Ratones Endogámicos mdx , Líquidos Iónicos/uso terapéutico , Aminoácidos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA