Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(24): 31158-31170, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38847089

RESUMEN

Lithium-sulfur (Li-S) batteries are considered as a promising energy storage technology due to their high energy density; however, the shuttling effect and sluggish redox kinetics of lithium polysulfides (LiPSs) severely deteriorate the electrochemical performance of Li-S batteries. Herein, we report a novel configuration wherein In2O3 and Co3O4 are incorporated into N-doped porous carbon as a sulfur host material (In2O3@NC-Co3O4) using metal-organic framework-based materials to synergistically tune the catalytic abilities of different metal oxides for different reaction stages of LiPSs, achieving a rapid redox conversion of LiPSs. In particular, the introduction of N-doped carbon improved the electron transport of the materials. The polar interface of In2O3 and Co3O4 anchors both long- and short-chain LiPSs and catalyzes long-chain and short-chain LiPSs, respectively, even at low temperatures. Consequently, the Li-S battery with In2O3@NC-Co3O4 cathode materials delivered an excellent discharge capacity of 1042.4 mAh g-1 at 1 C and a high capacity retention of 85.1% after 500 cycles. Impressively, the In2O3@NC-Co3O4 cathode displays superior performances at high current density and low temperature due to the enhanced redox kinetics, delivering 756 mAh g-1 at 2 C (room temperature) and 755 mAh g-1 at 0.1 C (-20 °C).

2.
ACS Appl Mater Interfaces ; 16(15): 18937-18948, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564761

RESUMEN

The shuttle effect of soluble lithium polysulfides (LiPSs) poses a crucial challenge for commercializing lithium-sulfur batteries. The functionalization of the separator is an effective strategy for enhancing the cell lifespan through the capture and reuse of LiPSs. Herein, a novel In2O3 nanorod with an ultrathin carbon layer (In2O3@C) was coated on a polypropylene separator. The results demonstrate the adsorption and catalysis of In2O3 on polysulfides, effectively inhibiting the shuttle effect and improving the redox kinetics of LiPSs. Besides, the ultrathin carbon layer increases the reaction sites and accelerates the electrochemical reaction rate. The cell with the In2O3@C interlayer displays excellent reversibility and stability with a 0.029% capacity decay each cycle in 2000 cycles at 2C. In addition, the In2O3@C interlayer significantly improves the cell performance under high current (888.2 mA h g-1 at 2C and room temperature) and low temperature (1007.8 mA h g-1 at 0.1C and -20 °C) conditions.

3.
Langmuir ; 39(34): 12144-12152, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37584308

RESUMEN

Rare earth elements and graphene composites exhibit better catalytic properties in energy storage materials. The introduction of rare earth oxide and graphene composites as functional layers into the separator to seal the "shuttle effect" formed by polysulfides during the discharge process has proven to be effective. In this study, we prepared CeO2/graphene composites (labeled as CeG) by intercalation exfoliation and in situ electrodeposition methods simultaneously, in which CeO2 was encapsulated in large folds of graphene, which exhibited good defect levels (ID/IG < 1) and its intrinsically superior physical structure acted as a shielding layer to hinder the shuttle of polysulfides, improving the cycling stability and rate of cell performance. The separator cell with CeG achieves an initial discharge specific capacity of 1133.5 mAh/g at 0.5C, excellent rate performance (978.5 mAh/g at 2C), and long cycling (790 mAh/g after 400 cycles).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA