Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 457
Filtrar
1.
Adv Mater ; : e2403549, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38723270

RESUMEN

It is a pressing need to develop new energy materials to address the existing energy crisis. However, screening optimal targets out of thousands of materials candidates remains a great challenge. Herein, we propose and validate an alternative concept for highly effective materials screening based on dual-atom salphen catalysis units. Such an approach simplifies the design of catalytic materials and reforms the trial-and-error experimental model into a building-blocks-assembly like process. Firstly, density functional theory (DFT) calculations were performed on a series of potential catalysis units which were possible to synthesize. Then, machine learning (ML) was employed to define the structure-performance relationship and acquire chemical insights. Afterwards, the projected catalysis units were integrated into covalent organic frameworks (COFs) to validate the concept Electrochemical tests confirm that Ni-SalphenCOF and Co-SalphenCOF are promising conductive agent-free oxygen evolution reaction (OER) catalysts. This work provides a fast-tracked strategy for design and development of functional materials, which serves as a potentially workable framework for seamlessly integrating DFT calculations, ML, and experimental approaches. This article is protected by copyright. All rights reserved.

2.
ACS Nano ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743703

RESUMEN

The all-inorganic halide perovskite CsPbX3 (X = Cl, Br, or I) offers various advantages, such as tunable electronic structure and high carrier mobility. However, its potential application in thermoelectric materials remains underexplored. In this study, we propose a simple yet effective method to synthesize a CsPbX3/Bi0.4Sb1.6Te3 (BST) nanocomposite by sintering a uniformly mixed raw powder. The intrinsic excitation of the BST system is suppressed by exploiting the rich phase structure and tunable electrical transport properties of CsPbX3, and the thermoelectric properties were synergistically optimized. Notably, for CsPbI3, its phase-transition-induced dislocation arrays together with low group velocities drastically reduce thermal conductivity. As a result, the composite achieves an ultrahigh average figure-of-merit (ZT) of 1.4 from 298 to 523 K. The two-pair TE module demonstrates a superior conversion efficiency of 7.3%. This study expands the potential applications of inorganic halide perovskites, into thermoelectrics.

3.
Sci Rep ; 14(1): 10557, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719889

RESUMEN

Cardiometabolic multimorbidity (CM), defined as the coexistence of two or three cardiometabolic disorders, is one of the most common and deleterious multimorbidities. This study aimed to investigate the association of Clínica Universidad de Navarra-Body Adiposity Estimator (CUN-BAE), body mass index (BMI), waist circumference (WC), and waist-to-height ratio (WHtR) with the prevalence of CM. The data were obtained from the 2021 health checkup database for residents of the Electronic Health Management Center in Xinzheng, Henan Province, China. 81,532 participants aged ≥ 60 years were included in this study. Logistic regression models were used to estimate the odd ratios (ORs) and 95% confidence intervals (CIs) for CUN-BAE, BMI, WC, and WHtR in CM. The area under the receiver operating characteristic curve (AUC) was used to compare the discriminatory ability of different anthropometric indicators for CM. The multivariable-adjusted ORs (95% CIs) (per 1 SD increase) of CM were 1.799 (1.710-1.893) for CUN-BAE, 1.329 (1.295-1.364) for BMI, 1.343 (1.308-1.378) for WC, and 1.314 (1.280-1.349) for WHtR, respectively. Compared with BMI, WC and WHtR, CUN-BAE had the highest AUC in both males and females (AUC: 0.642; 95% CI 0.630-0.653 for males, AUC: 0.614; 95% CI 0.630-0.653 for females). CUN-BAE may be a better measure of the adverse effect of adiposity on the prevalence of CM than BMI, WC, and WHtR.


Asunto(s)
Adiposidad , Índice de Masa Corporal , Multimorbilidad , Obesidad , Circunferencia de la Cintura , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Transversales , Obesidad/epidemiología , Anciano , China/epidemiología , Relación Cintura-Estatura , Prevalencia , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Curva ROC
4.
Biochim Biophys Acta Mol Basis Dis ; : 167246, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38763408

RESUMEN

Glucose and lipid metabolic disorders (GLMDs), such as diabetes, dyslipidemia, metabolic syndrome, nonalcoholic fatty liver disease, and obesity, are significant public health issues that negatively impact human health. The endoplasmic reticulum (ER) plays a crucial role at the cellular level for lipid and sterol biosynthesis, intracellular calcium storage, and protein post-translational modifications. Imbalance and dysfunction of the ER can affect glucose and lipid metabolism. As an essential trace element, selenium contributes to various human physiological functions mainly through 25 types of selenoproteins (SELENOs). At least 10 SELENOs, with experimental and/or computational evidence, are predominantly found on the ER membrane or within its lumen. Two iodothyronine deiodinases (DIOs), DIO1 and DIO2, regulate the thyroid hormone deiodination in the thyroid and some external thyroid tissues, influencing glucose and lipid metabolism. Most of the other eight members maintain redox homeostasis in the ER. Especially, SELENOF, SELENOM, and SELENOS are involved in unfolded protein responses; SELENOI catalyzes phosphatidylethanolamine synthesis; SELENOK, SELENON, and SELENOT participate in calcium homeostasis regulation; and the biological significance of thioredoxin reductase 3 in the ER remains unexplored despite its established function in the thioredoxin system. This review examines recent research advances regarding ER SELENOs in GLMDs and aims to provide insights on ER-related pathology through SELENOs regulation.

5.
Acta Biomater ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38697383

RESUMEN

Sonodynamic therapy (SDT), utilizing ultrasound (US) as the trigger, has gained popularity recently as a therapeutic approach with significant potential for treating various diseases. Metal-organic frameworks (MOFs), characterized by structural flexibility, are prominently emerging in the SDT realm as an innovative type of sonosensitizer, offering functional tunability and biocompatibility. However, due to the inherent limitations of MOFs, such as low reactivity to reactive oxygen species and challenges posed by the complex tumor microenvironment, MOF-based sonosensitizers with singular functions are unable to demonstrate the desired therapeutic efficacy and may pose risks of toxicity, limiting their biological applications to superficial tissues. MOFs generally possess distinctive crystalline structures and properties, and their controlled coordination environments provide a flexible platform for exploring structure-effect relationships and guiding the design and development of MOF-based nanomaterials to unlock their broader potential in biological fields. The primary focus of this paper is to summarize cases involving the modification of different MOF materials and the innovative strategies developed for various complex conditions. The paper outlines the diverse application areas of functionalized MOF-based sonosensitizers in tumor synergistic therapies, highlighting the extensive prospects of SDT. Additionally, challenges confronting SDT are briefly summarized to stimulate increased scientific interest in the practical application of MOFs and the successful clinical translation of SDT. Through these discussions, we strive to foster advancements that lead to early-stage clinical benefits for patients. STATEMENT OF SIGNIFICANCE: 1. An overview for the progresses in SDT explored from a novel and fundamental perspective. 2. Different modification strategies to improve the MOFs-mediated SDT efficacy are provided. 3. Guidelines for the design of multifunctional MOFs-based sonosensitizers are offered. 4. Powerful tumor ablation potential is reflected in SDT-led synergistic therapies. 5. Future challenges in the field of MOFs-based SDT in clinical translation are suggested.

6.
Nanoscale ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757969

RESUMEN

Sulfur dioxide poisoning is a significant factor in catalyst deactivation during the catalytic combustion of volatile organic compounds. In this study, we prepared the LaCoO3 and Co3O4 composite catalysts using both the Ship-in-Bottle and Building-Bottle-Around-Ship approaches. Three-dimensionally ordered macropores (3DOM LaCoO3) were utilized as nanoreactors to protect the active sites during the catalytic combustion of toluene, preventing SO2 poisoning. Additionally, we grew ZIF-67 confined in the nanoreactor to create a multistage-pore structure. The Co3O4@3DOM LaCoO3 catalysts exhibited excellent activity in the complete catalytic oxidation of toluene. Various characterization studies confirmed the presence of a significant number of Co3+ species and an abundance of surface weak acid sites in the Co3O4@3DOM LaCoO3 catalysts, which synergistically enhanced the conversion of VOCs at low temperatures. Notably, the multistage pore structure provided a favorable reaction environment, accelerating the adsorption and diffusion of toluene and intermediates, resulting in excellent sulfur resistance of the catalysts. Moreover, XPS analysis confirmed a strong interaction between Co3O4 and LaCoO3, promoting rapid electron transfer and increasing the activation of O2-. In situ DRIFTS experiments verified that toluene mainly follows the MvK mechanism over Co3O4@3DOM LaCoO3 catalysts, indicating the following reaction pathway: toluene adsorption → benzyl alcohol → benzaldehyde → benzoate → anhydride → CO2 and H2O.

7.
BMC Public Health ; 24(1): 1335, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760762

RESUMEN

The association between fasting plasma glucose (FPG), an important indicator of overall glycemic status, and the risk of cardiovascular mortality has been well investigated. The longitudinal study can repeatedly collect measured results for the variables to be studied and then consider the potential effects of intraindividual changes in measurement. This study aimed to identify long-term FPG trajectories and investigate the association between trajectory groups and cardiovascular and all-cause mortality. A latent class growth mixture modeling (LCGMM) was used to identify FPG trajectories. Cox proportional hazard models were used to estimate associations between FPG trajectories and the risk of all-cause and cardiovascular mortality. A U-shaped relationship between FPG and all-cause and cardiovascular mortality was observed in the restricted cubic spline regression models. Two FPG longitudinal trajectories of low-level (mean FPG = 5.12mmol/L) and high-level (mean FPG = 6.74mmol/L) were identified by LCGMM. After being adjusted for potential confounders, compared with the low-level category, the hazard ratios (HRs) for all-cause and cardiovascular mortality were 1.23(1.16-1.30) and 1.25(1.16-1.35), respectively, for the high-level group. Long-term FPG trajectories are significantly associated with and potentially impact the risk of all-cause and cardiovascular mortality.


Asunto(s)
Glucemia , Enfermedades Cardiovasculares , Ayuno , Humanos , Enfermedades Cardiovasculares/mortalidad , Masculino , Femenino , Estudios Retrospectivos , Glucemia/análisis , China/epidemiología , Anciano , Estudios Longitudinales , Ayuno/sangre , Causas de Muerte , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Factores de Riesgo , Pueblos del Este de Asia
8.
Phytomedicine ; 129: 155690, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38761523

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have been administered as the first-line therapy for patients with EGFR mutations in LUAD, but it is almost inevitable that resistance to EGFR-TKIs therapy eventually arises. Polyphyllin I (PPI), derived from Paris polyphylla rhizomes, has been shown to have potent anti-cancer properties in a range of human cancer types including LUAD. However, the role of PPI in gefitinib resistance and the underlying mechanism remain elusive. PURPOSE: To evaluate the antitumor impacts of PPI on gefitinib resistance cells and investigate its molecular mechanism. METHODS: CCK-8, wound healing, transwell assay, and xenograft model were performed to determine the anti-cancer effects of PPI as well as its ability to overcome gefitinib resistance. Immunoblotting, co-immunoprecipitation, phospho-RTK antibody array, qRT-PCR, and immunofluorescence were utilized to explore the mechanism by which PPI overrides gefitinib resistance. RESULTS: PPI inhibited cell survival, growth, and migration/invasion in both gefitinib-sensitive (PC9) and -resistant (PC9/GR) LUAD cells (IC50 at 2.0 µM). Significantly, treatment with PPI at 1.0 µM resensitized the resistant cells to gefitinib. Moreover, cell-derived xenograft experiments revealed that the combination of PPI and gefitinib overcame gefitinib resistance. The phospho-RTK array and immunoblotting analyses showed PPI significant inhibition of the VEGFR2/p38 pathway. In addition, molecular docking suggested the interaction between PPI and HIF-1α. Mechanistically, PPI reduced the protein expression of HIF-1α in both normoxia and hypoxia conditions by triggering HIF-1α degradation. Moreover, HIF-1α protein but not mRNA level was elevated in gefitinib-resistant LUAD. We further demonstrated that PPI considerably facilitated the binding of HIF-1α to VHL. CONCLUSIONS: We present a novel discovery demonstrating that PPI effectively counteracts gefitinib resistance in LUAD by modulating the VEGF/VEGFR2/p38 pathway. Mechanistic investigations unveil that PPI facilitates the formation of the HIF-1α /VHL complex, leading to the degradation of HIF-1α and subsequent inhibition of angiogenesis. These findings uncover a previously unidentified mechanism governing HIF-1α expression in reaction to PPI, providing a promising method for therapeutic interventions targeting EGFR-TKI resistance in LUAD.

9.
BMC Public Health ; 24(1): 940, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566105

RESUMEN

Family has a significant impact on individual mental health. Based on social support theory, family system theory and the Mental Health Continuum Short Form (MHC-SF), this research constructed a model of the pathway of perceived family support on psychological well-being and the results empirically clarified that perceived family support has a significant positive relationship with emotional well-being, social well-being, and psychological well-being (P < 0.001). Emotional well-being positively influences social well-being and psychological well-being (P < 0.001). Social well-being positively affects psychological well-being (P < 0.001). There were direct mediating effects of emotional well-being (13.45%), direct mediating effects of social well-being (32.82%) and a serial mediating effect (28.07%) between perceived family support and psychological well-being (P < 0.001).


Asunto(s)
Apoyo Familiar , Bienestar Psicológico , Humanos , Salud Mental , Emociones , Apoyo Social
10.
Nano Lett ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38620050

RESUMEN

Understanding the structure-performance relationships of a frustrated Lewis pair (FLP) at the atomic level is key to yielding high efficiency in activating chemically "inert" molecules into value-added products. A sound strategy was developed herein through incorporating oxygen defects into a Zr-based metal-organic layer (Zr-MOL-D) and employing Lewis basic proximal surface hydroxyls for the in situ formation of solid heterogeneous FLP (Zr4-δ-VO-Zr-OH). Zr-MOL-D exhibits a superior CO2 to CO conversion rate of 49.4 µmol g-1 h-1 in water vapor without any sacrificing agent or photosensitizer, which is about 12 times higher than that of pure MOL (Zr-MOL-P), with extreme stability even after being placed for half a year. Theoretical and experimental results reveal that the introduction of FLP converts the process of the crucial intermediate COOH* from an endothermic reaction to an exothermic spontaneous reaction. This work is expected to provide new prospects for developing efficient MOL-based photocatalysts in FLP chemistry through a sound defect-engineering strategy.

11.
Transl Oncol ; 44: 101931, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599002

RESUMEN

LncRNAs are vital regulators for lung squamous cell carcinoma (LUSC). However, the detailed role that LINC01133 plays in LUSC is unclear. This work sought to explore the potential function of LINC01133.Levels of LINC01133, miR-30d-5p, and MARCKS were separately tested in both tissues and cells using qRT-PCR. Proliferation was assessed through MTT experiment and apoptosis was detected upon flow cytometry. Transwell experiments were implemented to evaluate migratory and invasive abilities. The interaction between two genes was affirmed through luciferase reporter assay and RNA pull-down experiment. Western blotting measured the protein level of MARCKS. Animal models were established and tissues were taken for IHC analysis of MARCKS and Ki67.LINC01133 was elevated in LUSC and its downregulation could suppress proliferation, migration and invasion but induced apoptosis. LINC01133 interacted with and regulated the binding of miR-30d-5p to MARCKS. LINC01133/miR-30d-5p axis mediated proliferation, apoptosis, migration and invasion in LUSC cells, as well as modulated tumor growth in animal models. LINC01133 interacted with miR-30d-5p to modulate MARCKS expression, contributes to promoted cell proliferation, migration, invasion, and inhibited cell apoptosis in vitro, and promoted tumor growth in vivo. These findings could provide possible therapeutic targets in view of LUSC treatment in the future.

12.
Heliyon ; 10(7): e29285, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38633650

RESUMEN

Background: EEPD1 is vital in homologous recombination, while its role in cancer remains unclear. Methods: We performed multiple pan-cancer analyses of EEPD1 with bioinformatics methods, such as gene expression, gene alterations, Prognosis and enrichment analysis, tumor microenvironment, immune cell infiltration, TMB, MSI, immunotherapy, co-expression of genes, and drug resistance. Finally, RT-qPCR, EdU, and transwell assays helped investigate the impact of EEPD1 on CRC cells. Results: EEPD1 was dysregulated and correlated with bad prognosis in several cancers. GSVA and GSEA revealed that EEPD1 was primarily associated with the "WNT_BETA_CATENIN_SIGNALING," "ribonucleoprotein complex biogenesis," "Ribosome," and "rRNA processing." The infiltration of CD8+ T cells, MAIT cells, iTreg cells, NK cells, Tc cells, Tex cells, Tfh cells, and Th1 cells were negatively correlated with EEPD1 expression. Additionally, EEPD1 is significantly associated with TMB and MSI in COAD, while enhanced CRC cell proliferation and migration. Conclusions: EEPD1 was dysregulated in human cancers and correlated with various cancer patient prognoses. The dysregulated EEPD1 expression can affect tumor-infiltrating immune cells and immunotherapy response. Therefore, EEPD1 could act as an oncogene associated with immune cell infiltration in CRC.

13.
J Am Chem Soc ; 146(17): 11855-11865, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634945

RESUMEN

Creating structural defects in a controlled manner within metal-organic frameworks (MOFs) poses a significant challenge for synthesis, and concurrently, identifying the types and distributions of these defects is also a formidable task for characterization. In this study, we demonstrate that by employing 2-sulfonylterephthalic acid as the ligand for synthesizing Zr (or Hf)-based MOFs, a crystal phase transformation from the common fcu topology to the rare jmt topology can be easily facilitated using a straightforward mixed-solvent strategy. The jmt phase, characterized by an extensively open framework, can be considered a derivative of the fcu phase, generated through the introduction of missing-cluster defects. We have explicitly identified both MOF phases, their intermediate states, and the novel core-shell structures they form using ultralow-dose high-resolution transmission electron microscopy. In addition to facilitating phase engineering, the incorporation of sulfonic groups in MOFs imparts ionic selectivity, making them applicable for osmotic energy harvesting through mixed matrix membrane fabrication. The membrane containing the jmt-phase MOF exhibits an exceptionally high peak power density of 10.08 W m-2 under a 50-fold salinity gradient (NaCl: 0.5 M|0.01 M), which surpasses the threshold of 5 W m-2 for commercial applications and can be attributed to the combination of large pore size, extensive porosity, and abundant sulfonic groups in this novel MOF material.

14.
Front Immunol ; 15: 1362784, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545107

RESUMEN

Due to the physiological alteration during pregnancy, maternal gut microbiota changes following the metabolic processes. Recent studies have revealed that maternal gut microbiota is closely associated with the immune microenvironment in utero during pregnancy and plays a vital role in specific pregnancy complications, including preeclampsia, gestational diabetes, preterm birth and recurrent miscarriages. Some other evidence has also shown that aberrant maternal gut microbiota increases the risk of various diseases in the offspring, such as allergic and neurodevelopmental disorders, through the immune alignment between mother and fetus and the possible intrauterine microbiota. Probiotics and the high-fiber diet are effective inventions to prevent mothers and fetuses from diseases. In this review, we summarize the role of maternal gut microbiota in the development of pregnancy complications and the health condition of future generations from the perspective of immunology, which may provide new therapeutic strategies for the health management of mothers and offspring.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Complicaciones del Embarazo , Nacimiento Prematuro , Embarazo , Femenino , Humanos , Recién Nacido , Madres , Complicaciones del Embarazo/metabolismo
15.
Transfusion ; 64(5): 784-788, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38515390

RESUMEN

BACKGROUND: Large-scale observational studies have summarized transfusion practice using traditional measures of central tendency (e.g., the mean hemoglobin concentration at the time of transfusion). However, the mean hemoglobin concentration fails to identify specific hemoglobin concentration thresholds that drive practice. In the following brief report, we propose a novel measure of "practice discontinuity" that identifies specific practice-defining hemoglobin thresholds. STUDY DESIGN AND METHODS: We used the PINC AI Database (2016-2022) to identify adult patients admitted to an intensive care unit with at least one hemoglobin concentration measurement. For each day that hemoglobin was measured, we identified whether the patient received a red blood cell transfusion using hospital charge codes. We defined the "practice discontinuity" measure as the hemoglobin concentration at which there was the largest increase in transfusion use going from a higher to an incrementally lower hemoglobin concentration. We also calculated the mean and median pretransfusion hemoglobin concentrations. RESULTS: We identified 1,298,367 patients and 4,905,839 patient-days for inclusion. RBC transfusion occurred in a total of 530,654 (10.8%) patient-days. The overall pre-transfusion mean and median hemoglobin concentrations were 8.4 and 8.0 g/dL, respectively. The practice discontinuity measure identified 7.0 g/dL as the hemoglobin concentration at which transfusion use increased the most, from 46.6% of patient-days at a concentration of 7.0 g/dL to 74.8% of patient-days at a concentration of 6.9 g/dL. DISCUSSION: We propose that future studies of red blood cell transfusion practice consider inclusion of the practice discontinuity measure to more fully summarize clinical practice.


Asunto(s)
Enfermedad Crítica , Transfusión de Eritrocitos , Hemoglobinas , Humanos , Enfermedad Crítica/terapia , Hemoglobinas/análisis , Femenino , Masculino , Unidades de Cuidados Intensivos , Persona de Mediana Edad , Transfusión Sanguínea/métodos , Anciano , Adulto , Bases de Datos Factuales
16.
Cancer Cell Int ; 24(1): 105, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475858

RESUMEN

Immune microenvironment and immunotherapy have become the focus and frontier of tumor research, and the immune checkpoint inhibitors has provided novel strategies for tumor treatment. Malignant pleural effusion (MPE) is a common end-stage manifestation of lung cancer, malignant pleural mesothelioma and other thoracic malignancies, which is invasive and often accompanied by poor prognosis, affecting the quality of life of affected patients. Currently, clinical therapy for MPE is limited to pleural puncture, pleural fixation, catheter drainage, and other palliative therapies. Immunization is a new direction for rehabilitation and treatment of MPE. The effusion caused by cancer cells establishes its own immune microenvironment during its formation. Immune cells, cytokines, signal pathways of microenvironment affect the MPE progress and prognosis of patients. The interaction between them have been proved. The relevant studies were obtained through a systematic search of PubMed database according to keywords search method. Then through screening and sorting and reading full-text, 300 literatures were screened out. Exclude irrelevant and poor quality articles, 238 literatures were cited in the references. In this study, the mechanism of immune microenvironment affecting malignant pleural effusion was discussed from the perspectives of adaptive immune cells, innate immune cells, cytokines and molecular targets. Meanwhile, this study focused on the clinical value of microenvironmental components in the immunotherapy and prognosis of malignant pleural effusion.

17.
Nat Commun ; 15(1): 2556, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519497

RESUMEN

Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore configurations, stable periodic structures, abundant coordination sites and high surface area. This work aims to construct a non-thermodynamically stable Pt-N2 coordination active site by electrochemically modifying platinum (Pt) single atoms into a fully conjugated 2D COF as conductive agent-free and pyrolysis-free electrocatalyst for the hydrogen evolution reaction (HER). In addition to maximizing atomic utilization, single-atom catalysts with definite structures can be used to investigate catalytic mechanisms and structure-activity relationships. In this work, in-situ characterizations and theoretical calculations reveal that a nitrogen-rich graphene analogue COF not only exhibits a favorable metal-support effect for Pt, adjusting the binding energy between Pt sites to H* intermediates by forming unique Pt-N2 instead of the typical Pt-N4 coordination environment, but also enhances electron transport ability and structural stability, showing both conductivity and stability in acidic environments.

18.
Inorg Chem ; 63(9): 4288-4298, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38369784

RESUMEN

Ba3Lu(BO3)3(BLB):Ce3+,Tb3+/Mn2+ phosphors were designed to explore effective and multifunctional applications. Under the excitation of near-ultraviolet (n-UV) light, the BLB:Ce3+ phosphor showed broad-band blue emission. After codoping with Mn2+ ions, the single-phase white light phosphor is achieved through the energy transfer (ET) between Ce3+ and Mn2+. In addition, thermal stability is significantly enhanced by the addition of Tb3+ (BLB:0.02Ce3+,0.20Tb3+) compared to that codoped with Mn2+ (BLB:0.02Ce3+,0.10Mn2+). The light-emitting diode (LED) device with warm white light emission is fabricated with UV-chip-coated BLB:0.02Ce3+,0.05Tb3+ and Sr2Si5N8:Eu2+ phosphors, showing a good potential application value for LEDs. Additionally, the spectral properties of borate-based phosphors (BLB:0.02Ce3+) under high pressure were studied for the first time. Surprisingly, the change of pressure enabled the emission peak of BLB:0.02Ce3+ to be tuned from 485 to 552 nm, and dλ/dP is 3.51 nm GPa-1. The color changes from blue to yellow with an increase of pressure. Compared with the reported data, the pressure-sensing sensitivity based on the central peak shift in this work is the highest in all Ce3+ single-doped samples. In addition, the emitting color and intensity were gradually regained after decompression. The intensity can reach 80% of the initial intensity. All data demonstrate that the BLB:0.02Ce3+ phosphor has the potential to be utilized as an optical pressure sensor due to the high-pressure sensitivity and visible color tuning.

19.
J Hepatocell Carcinoma ; 11: 305-316, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38348098

RESUMEN

Background: Stereotactic body radiotherapy (SBRT) has emerged as an alternative approach for patients with hepatocellular carcinoma (HCC), and we aim to find potential prognostic biomarkers for HCC patients who received SBRT. Methods: In this study, we retrospectively analyzed HCC patients who underwent SBRT in our institution from January 2018 to December 2022. The inflammatory parameters, along with baseline patients' characteristics were collected to elucidate the potential relationship with survival benefits and liver toxicities. Results: Overall, 35 patients were enrolled in our study. For the efficacy population (25 patients who underwent SBRT for primary liver lesions), the objective response rate (ORR) and disease control rate (DCR) were 60% and 100%, respectively. The median progression-free survival (PFS) was 9.9 months [95% confidence interval (CI) 5.6-14.1 months], and the median overall survival (OS) was 18.5 months (95% CI 14.2-22.8 months). We further confirmed that higher baseline lymphocyte-C-reactive protein ratio (LCR) (≥2361.11) was positively related to both longer PFS (12.0 vs 4.3 months, P = 0.002) and OS (21.9 vs 11.4 months, P = 0.022). Moreover, patients with diabetes and higher alpha-fetoprotein (AFP) (≥400 ng/mL) were also found to be associated with worse OS. The most common hepatotoxicity was elevated gamma-glutamyl transferase (GGT) (84.0%). Conclusion: In conclusion, for patients with inoperable HCC, SBRT resulted in satisfactory local control, survival benefits, and acceptable liver toxicity. Pre-radiotherapy LCR might be an independent and readily available predictor for survival, which facilitates us to find the most appropriate treatment options.

20.
Inorg Chem ; 63(8): 3882-3892, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38358930

RESUMEN

Optical pressure sensing by phosphors is a growing area of research. However, the main pressure measurement methods rely on the movement of the central peak position, which has significant drawbacks for practical applications. This paper demonstrates the feasibility of using the fluorescence intensity ratio (FIR) of different emission peaks for pressure sensing. The FIR (IBi3+/ILn3+) values of the synthesized YNbO4:Bi3+/Ln3+ (Ln = Eu or Sm) phosphors are all first-order exponentially related to pressure, and YNbO4:Bi3+/Ln3+ (Ln = Eu or Sm) phosphors have high pressure-sensing sensitivities (Sp and Spr), which are 6 times higher than those from our previously reported work. In addition, the changes in FIR values during the decompression process were also calculated, and the trend was similar to that during the compression process. The YNbO4:Bi3+,Eu3+ phosphor has better pressure recovery performance. In summary, the YNbO4:Bi3+/Ln3+ (Ln = Eu or Sm) phosphors reported in this paper are expected to be applied in the field of optical pressure sensing, and this study provides a new approach and perspective for designing new phosphors for pressure measurement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...