Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
bioRxiv ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37425692

RESUMEN

In combination with cell intrinsic properties, interactions in the tumor microenvironment modulate therapeutic response. We leveraged high-plex single-cell spatial transcriptomics to dissect the remodeling of multicellular neighborhoods and cell-cell interactions in human pancreatic cancer associated with specific malignant subtypes and neoadjuvant chemotherapy/radiotherapy. We developed Spatially Constrained Optimal Transport Interaction Analysis (SCOTIA), an optimal transport model with a cost function that includes both spatial distance and ligand-receptor gene expression. Our results uncovered a marked change in ligand-receptor interactions between cancer-associated fibroblasts and malignant cells in response to treatment, which was supported by orthogonal datasets, including an ex vivo tumoroid co-culture system. Overall, this study demonstrates that characterization of the tumor microenvironment using high-plex single-cell spatial transcriptomics allows for identification of molecular interactions that may play a role in the emergence of chemoresistance and establishes a translational spatial biology paradigm that can be broadly applied to other malignancies, diseases, and treatments.

3.
Cancer Discov ; 13(6): 1428-1453, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-36946782

RESUMEN

We have shown that KRAS-TP53 genomic coalteration is associated with immune-excluded microenvironments, chemoresistance, and poor survival in pancreatic ductal adenocarcinoma (PDAC) patients. By treating KRAS-TP53 cooperativity as a model for high-risk biology, we now identify cell-autonomous Cxcl1 as a key mediator of spatial T-cell restriction via interactions with CXCR2+ neutrophilic myeloid-derived suppressor cells in human PDAC using imaging mass cytometry. Silencing of cell-intrinsic Cxcl1 in LSL-KrasG12D/+;Trp53R172H/+;Pdx-1Cre/+(KPC) cells reprograms the trafficking and functional dynamics of neutrophils to overcome T-cell exclusion and controls tumor growth in a T cell-dependent manner. Mechanistically, neutrophil-derived TNF is a central regulator of this immunologic rewiring, instigating feed-forward Cxcl1 overproduction from tumor cells and cancer-associated fibroblasts (CAF), T-cell dysfunction, and inflammatory CAF polarization via transmembrane TNF-TNFR2 interactions. TNFR2 inhibition disrupts this circuitry and improves sensitivity to chemotherapy in vivo. Our results uncover cancer cell-neutrophil cross-talk in which context-dependent TNF signaling amplifies stromal inflammation and immune tolerance to promote therapeutic resistance in PDAC. SIGNIFICANCE: By decoding connections between high-risk tumor genotypes, cell-autonomous inflammatory programs, and myeloid-enriched/T cell-excluded contexts, we identify a novel role for neutrophil-derived TNF in sustaining immunosuppression and stromal inflammation in pancreatic tumor microenvironments. This work offers a conceptual framework by which targeting context-dependent TNF signaling may overcome hallmarks of chemoresistance in pancreatic cancer. This article is highlighted in the In This Issue feature, p. 1275.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neutrófilos , Receptores Tipo II del Factor de Necrosis Tumoral/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Inflamación/genética , Microambiente Tumoral/fisiología , Quimiocina CXCL1/genética , Neoplasias Pancreáticas
4.
Nat Chem Biol ; 19(5): 548-555, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36593274

RESUMEN

Metal ions have various important biological roles in proteins, including structural maintenance, molecular recognition and catalysis. Previous methods of predicting metal-binding sites in proteomes were based on either sequence or structural motifs. Here we developed a co-evolution-based pipeline named 'MetalNet' to systematically predict metal-binding sites in proteomes. We applied MetalNet to proteomes of four representative prokaryotic species and predicted 4,849 potential metalloproteins, which substantially expands the currently annotated metalloproteomes. We biochemically and structurally validated previously unannotated metal-binding sites in several proteins, including apo-citrate lyase phosphoribosyl-dephospho-CoA transferase citX, an Escherichia coli enzyme lacking structural or sequence homology to any known metalloprotein (Protein Data Bank (PDB) codes: 7DCM and 7DCN ). MetalNet also successfully recapitulated all known zinc-binding sites from the human spliceosome complex. The pipeline of MetalNet provides a unique and enabling tool for interrogating the hidden metalloproteome and studying metal biology.


Asunto(s)
Metaloproteínas , Proteoma , Humanos , Secuencia de Aminoácidos , Proteoma/química , Metales/metabolismo , Metaloproteínas/metabolismo , Sitios de Unión , Escherichia coli/metabolismo , Aprendizaje Automático
5.
Front Oncol ; 12: 929950, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185212

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most treatment refractory and lethal malignancies. The diversity of endothelial cell (EC) lineages in the tumor microenvironment (TME) impacts the efficacy of antineoplastic therapies, which in turn remodel EC states and distributions. Here, we present a single-cell resolution framework of diverse EC lineages in the PDAC TME in the context of neoadjuvant chemotherapy, radiotherapy, and losartan. We analyzed a custom single-nucleus RNA-seq dataset derived from 37 primary PDAC specimens (18 untreated, 14 neoadjuvant FOLFIRINOX + chemoradiotherapy, 5 neoadjuvant FOLFIRINOX + chemoradiotherapy + losartan). A single-nucleus transcriptome analysis of 15,185 EC profiles revealed two state programs (ribosomal, cycling), four lineage programs (capillary, arterial, venous, lymphatic), and one program that did not overlap significantly with prior signatures but was enriched in pathways involved in vasculogenesis, stem-like state, response to wounding and hypoxia, and endothelial-to-mesenchymal transition (reactive EndMT). A bulk transcriptome analysis of two independent cohorts (n = 269 patients) revealed that the lymphatic and reactive EndMT lineage programs were significantly associated with poor clinical outcomes. While losartan and proton therapy were associated with reduced lymphatic ECs, these therapies also correlated with an increase in reactive EndMT. Thus, the development and inclusion of EndMT-inhibiting drugs (e.g., nintedanib) to a neoadjuvant chemoradiotherapy regimen featuring losartan and/or proton therapy may be most effective in depleting both lymphatic and reactive EndMT populations and potentially improving patient outcomes.

6.
Nat Genet ; 54(8): 1178-1191, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35902743

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal and treatment-refractory cancer. Molecular stratification in pancreatic cancer remains rudimentary and does not yet inform clinical management or therapeutic development. Here, we construct a high-resolution molecular landscape of the cellular subtypes and spatial communities that compose PDAC using single-nucleus RNA sequencing and whole-transcriptome digital spatial profiling (DSP) of 43 primary PDAC tumor specimens that either received neoadjuvant therapy or were treatment naive. We uncovered recurrent expression programs across malignant cells and fibroblasts, including a newly identified neural-like progenitor malignant cell program that was enriched after chemotherapy and radiotherapy and associated with poor prognosis in independent cohorts. Integrating spatial and cellular profiles revealed three multicellular communities with distinct contributions from malignant, fibroblast and immune subtypes: classical, squamoid-basaloid and treatment enriched. Our refined molecular and cellular taxonomy can provide a framework for stratification in clinical trials and serve as a roadmap for therapeutic targeting of specific cellular phenotypes and multicellular interactions.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/terapia , Perfilación de la Expresión Génica , Humanos , Terapia Neoadyuvante , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Pronóstico , Transcriptoma/genética , Neoplasias Pancreáticas
7.
Cancer Genet ; 264-265: 1-4, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35245846

RESUMEN

Immune checkpoint blockade (ICB) has shown immense promise for treating patients with various cancer types, but its effectiveness relies on our ability to identify likely responders. Here, we examined the association between mutations in 25 core DNA repair genes and ICB outcomes in 6619 patients across 9 cancer types with advanced disease and MSK-IMPACT tumor sequencing. Notably, we observed that mutations in 7 of the DNA repair genes (ATM, ATR, POLE, ERCC4, NBN, RAD50, PARP1) were significantly associated with improved overall survival in ICB-treated patients (p < 0.05 for all) and had significant interaction with treatment (pinteraction <0.05 for all). Similarly, DNA repair mutations were enriched in other cancer types not previously assessed and primary tumors of unknown origins, suggesting that mutations could serve as a biomarker independent of cancer type. Although our cohort was enriched in certain cancer types, such as melanoma and non-small cell lung cancer, and clinically matched samples were not assessed, our study provides a robust approach in characterizing clinically-adoptable biomarkers that can select for potential ICB responders.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Reparación del ADN/genética , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología
8.
Biophys Rev Lett ; 15(3): 131-141, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33033500

RESUMEN

Tumor invasion, the process by which tumor cells break away from their primary tumor and gain access to vascular systems, is an important step in cancer metastasis. Most current 3D tumor invasion assays consisted of single tumor cells embedded within an extracellular matrix (ECM). These assays taught us much of what we know today on how key biophysical (e.g. ECM stiffness) and biochemical (e.g. cytokine gradients) parameters within the tumor microenvironment guided and regulated tumor invasion. One limitation of the single tumor cell invasion assay was that it did not account for cell-cell adhesion within the tumor. In this article, we developed a micrometer scale 3D co-culture spheroid invasion assay that was compatible with microscopic imaging. Micrometer scale co-culture spheroids (1:1 ratio of metastatic breast cancer MDA-MB-231 and non-tumorigenic epithelial MCF-10A cells) were made using an array of microwells, and then were embedded within a collagen matrix in a microfluidic platform. Real time imaging of tumor spheroid invasion revealed that the spatial distribution of the two cell types within the tumor spheroid critically regulated tumor invasion. This work linked tumor architecture with tumor invasion and highlighted the importance of the biophysical cues within the bulk of the tumor in tumor invasion.

9.
Sci Rep ; 10(1): 9648, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32541776

RESUMEN

Tumor invasion within the interstitial space is critically regulated by the force balance between cell-extracellular matrix (ECM) and cell-cell interactions. Interstitial flows (IFs) are present in both healthy and diseased tissues. However, the roles of IFs in modulating cell force balance and subsequently tumor invasion are understudied. In this article, we develop a microfluidic model in which tumor spheroids are embedded within 3D collagen matrices with well-defined IFs. Using co-cultured tumor spheroids (1:1 mixture of metastatic and non-tumorigenic epithelial cells), we show that IFs downregulate the cell-cell adhesion molecule E-cadherin on non-tumorigenic cells and promote tumor invasion. Our microfluidic model advances current tumor invasion assays towards a more physiologically realistic model using tumor spheroids instead of single cells under perfusion. We identify a novel mechanism by which IFs can promote tumor invasion through an influence on cell-cell adhesion within the tumor and highlight the importance of biophysical parameters in regulating tumor invasion.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Técnicas Analíticas Microfluídicas/instrumentación , Invasividad Neoplásica/patología , Esferoides Celulares/citología , Adhesión Celular , Línea Celular , Técnicas de Cocultivo , Colágeno/metabolismo , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...