Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(20): 26325-26339, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38716494

RESUMEN

Mixed oxides of Rh-Cr (RhCrOx), containing Rh3+ and Cr3+ cations, are commonly used as cocatalysts for the hydrogen evolution reaction (HER) on particulate photocatalysts. The precise physicochemical mechanisms of the HER at the catalytic sites of these oxides are not well understood. In this study, model cocatalyst electrodes, composed of nanoparticulate RhCrOx, were fabricated to investigate the physicochemical mechanisms of the HER. Electroanalytical and X-ray photoelectron spectroscopic measurements revealed that nanoparticulate RhCrOx produces reduced Rh (Rh0) species by maintaining an electrode potential more negative than 0.03 V versus the reversible hydrogen electrode (VRHE). This results in significant enhancement of the HER activity. The catalytic activity for the HER stems from the reduced Rh species, and the inclusion of Cr3+ (CrOx) aided in the electron transfer process at the solid/liquid interface, resulting in a higher current density during the HER. To achieve a solar-to-hydrogen efficiency of over 3%, the conduction band minimum of the particulate photocatalyst should be positioned more negatively than -0.10 VRHE. Moreover, the formation of electron trap states at potentials more positive than 0.03 VRHE should be avoided. This study highlights the importance of understanding the catalytic sites on metal oxide cocatalysts. Moreover, it offers a design strategy for enhancing the efficiency of photocatalytic water splitting.

2.
Medicina (Kaunas) ; 60(5)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38792924

RESUMEN

(1) Introduction: Despite documented clinical and pain discrepancies between male and female osteoarthritis (OA) patients, the underlying mechanisms remain unclear. Synovial myofibroblasts, implicated in synovial fibrosis and OA-related pain, offer a potential explanation for these sex differences. Additionally, interleukin-24 (IL24), known for its role in autoimmune disorders and potential myofibroblast production, adds complexity to understanding sex-specific variations in OA. We investigate its role in OA and its contribution to observed sex differences. (2) Methods: To assess gender-specific variations, we analyzed myofibroblast marker expression and IL24 levels in synovial tissue samples from propensity-matched male and female OA patients (each n = 34). Gene expression was quantified using quantitative polymerase chain reaction (qPCR). The association between IL24 expression levels and pain severity, measured by a visual analog scale (VAS), was examined to understand the link between IL24 and OA pain. Synovial fibroblast subsets, including CD45-CD31-CD39- (fibroblast) and CD45-CD31-CD39+ (myofibroblast), were magnetically isolated from female patients (n = 5), and IL24 expression was compared between these subsets. (3) Results: Females exhibited significantly higher expression of myofibroblast markers (MYH11, ET1, ENTPD2) and IL24 compared to males. IL24 expression positively correlated with pain severity in females, while no correlation was observed in males. Further exploration revealed that the myofibroblast fraction highly expressed IL24 compared to the fibroblast fraction in both male and female samples. There was no difference in the myofibroblast fraction between males and females. (4) Conclusions: Our study highlights the gender-specific role of myofibroblasts and IL24 in OA pathogenesis. Elevated IL24 levels in females, correlating with pain severity, suggest its involvement in OA pain experiences. The potential therapeutic implications of IL24, demonstrated in autoimmune disorders, open avenues for targeted interventions. Notwithstanding the limitations of the study, our findings contribute to understanding OA's multifaceted nature and advocate for future research exploring mechanistic underpinnings and clinical applications of IL24 in synovial myofibroblasts. Additionally, future research directions should focus on elucidating the precise mechanisms by which IL24 contributes to OA pathology and exploring its potential as a therapeutic target for personalized medicine approaches.


Asunto(s)
Interleucinas , Miofibroblastos , Osteoartritis , Membrana Sinovial , Humanos , Femenino , Masculino , Miofibroblastos/metabolismo , Interleucinas/metabolismo , Interleucinas/análisis , Membrana Sinovial/metabolismo , Osteoartritis/metabolismo , Persona de Mediana Edad , Anciano , Puntaje de Propensión , Factores Sexuales , Dolor/metabolismo
3.
Microscopy (Oxf) ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38635461

RESUMEN

Differential phase contrast scanning transmission electron microscopy (DPC STEM) is a powerful technique for directly visualizing electromagnetic fields inside materials at high spatial resolution. Electric field observation within ferroelectric materials is potentially possible by DPC STEM, but concomitant diffraction contrast hinders the quantitative electric field evaluation. Diffraction contrast is basically caused by the diffraction-condition variation inside a field-of-view, but in the case of ferroelectric materials, the diffraction conditions can also change with respect to the polarization orientations. To quantitatively observe electric field distribution inside ferroelectric domains, the formation mechanism of diffraction contrast should be clarified in detail. In this study, we systematically simulated diffraction contrast of ferroelectric domains in DPC STEM images based on the dynamical diffraction theory, and clarify the issues for quantitatively observing electric fields inside ferroelectric domains. Furthermore, we conducted experimental DPC STEM observations for a ferroelectric material to confirm the influence of diffraction contrast predicted by the simulations.

4.
ACS Appl Energy Mater ; 7(6): 2101-2108, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38550299

RESUMEN

One of the main challenges to expand the use of titanium dioxide (titania) as a photocatalyst is related to its large band gap energy and the lack of an atomic scale description of the reduction mechanisms that may tailor the photocatalytic properties. We show that rutile TiO2 single crystals annealed in the presence of atomic hydrogen experience a strong reduction and structural rearrangement, yielding a material that exhibits enhanced light absorption, which extends from the ultraviolet to the near-infrared (NIR) spectral range, and improved photoelectrocatalytic performance. We demonstrate that both magnitudes behave oppositely: heavy/mild plasma reduction treatments lead to large/negligible spectral absorption changes and poor/enhanced (×10) photoelectrocatalytic performance, as judged from the higher photocurrent. To correlate the photoelectrochemical performance with the atomic and chemical structures of the hydrogen-reduced materials, we have modeled the process with in situ scanning tunneling microscopy measurements, which allow us to determine the initial stages of oxygen desorption and the desorption/diffusion of Ti atoms from the surface. This multiscale study opens a door toward improved materials for diverse applications such as more efficient rutile TiO2-based photoelectrocatalysts, green photothermal absorbers for solar energy applications, or NIR-sensing materials.

5.
Nano Lett ; 24(11): 3323-3330, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38466652

RESUMEN

Nanoscale defects like grain boundaries (GBs) would introduce local phonon modes and affect the bulk materials' thermal, electrical, optical, and mechanical properties. It is highly desirable to correlate the phonon modes and atomic arrangements for individual defects to precisely understand the structure-property relation. Here we investigated the localized phonon modes of Al2O3 GBs by combination of the vibrational electron energy loss spectroscopy (EELS) in scanning transmission electron microscope and density functional perturbation theory (DFPT). The differences between GB and bulk obtained from the vibrational EELS show that the GB exhibited more active vibration at the energy range of <50 meV and >80 meV, and further DFPT results proved the wide distribution of bond lengths at GB are the main factor for the emergence of local phonon modes. This research provides insights into the phonon-defect relation and would be of importance in the design and application of polycrystalline materials.

6.
Nat Commun ; 15(1): 851, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321026

RESUMEN

Owing to their remarkable properties, gold nanoparticles are applied in diverse fields, including catalysis, electronics, energy conversion and sensors. However, for catalytic applications of colloidal gold nanoparticles, the trade-off between their reactivity and stability is a significant concern. Here we report a universal approach for preparing stable and reactive colloidal small (~3 nm) gold nanoparticles by using multi-dentate polyoxometalates as protecting agents in non-polar solvents. These nanoparticles exhibit exceptional stability even under conditions of high concentration, long-term storage, heating and addition of bases. Moreover, they display excellent catalytic performance in various oxidation reactions of organic substrates using molecular oxygen as the sole oxidant. Our findings highlight the ability of inorganic multi-dentate ligands with structural stability and robust steric and electronic effects to confer stability and reactivity upon gold nanoparticles. This approach can be extended to prepare metal nanoparticles other than gold, enabling the design of novel nanomaterials with promising applications.

7.
Sci Adv ; 10(9): eadk6501, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38416833

RESUMEN

Single and multi-atoms supported on oxide substrates ultimately increase the efficiency of noble metal atom use, and moreover, catalytic activity and selectivity are also improved substantially. However, single and multi-atoms are unstable under catalytic conditions, and these metal atoms spontaneously aggregate and grow into nanoparticles. Catalytic performance is strongly related to local atomic configurations, and hence, it is essential to determine the three-dimensional (3D) atomic structures of multi-atoms on the substrate and their structural dynamics. Here, we show the real-time tracking of the 3D structural evolution of a Pt trimer on TiO2 (110) substrate at a high temperature, using high-spatiotemporal-resolution scanning transmission electron microscopy, where sub-angstrom spatial resolution is maintained, while the temporal resolution reaches 40 milliseconds. With the aid of prior structural knowledge of a Pt trimer for 3D reconstruction, the present method could open the way to characterize in situ atomic-scale structural dynamics, especially meta-stable structural transition.

9.
Nano Lett ; 24(10): 3112-3117, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38416575

RESUMEN

Grain boundary (GB) fracture is a major mechanism of material failure in polycrystalline ceramics. However, the intricate atomic arrangements of GBs have impeded our understanding of the atomistic mechanisms of these processes. In this study, we investigated the atomic-scale crack propagation behavior of an α-Al2O3 ∑13 grain boundary, using a combination of in situ transmission electron microscopy (TEM) and scanning TEM. The atomic-scale fracture path along the GB core was directly determined by the observation of the atomic structures of the fractured surfaces, which is consistent with density functional theory calculations. We found that the GB fracture can be attributed to the weaker local bonds and a smaller number of bonds along the fracture path. Our findings provide atomistic insights into the mechanisms of crack propagation along GBs, offering significant implications for GB engineering and the toughening of ceramics.

10.
Nat Commun ; 15(1): 397, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195692

RESUMEN

So-called Z-scheme systems permit overall water splitting using narrow-bandgap photocatalysts. To boost the performance of such systems, it is necessary to enhance the intrinsic activities of the hydrogen evolution photocatalyst and oxygen evolution photocatalyst, promote electron transfer from the oxygen evolution photocatalyst to the hydrogen evolution photocatalyst, and suppress back reactions. The present work develop a high-performance oxysulfide photocatalyst, Sm2Ti2O5S2, as an hydrogen evolution photocatalyst for use in a Z-scheme overall water splitting system in combination with BiVO4 as the oxygen evolution photocatalyst and reduced graphene oxide as the solid-state electron mediator. After surface modifications of the photocatalysts to promote charge separation and redox reactions, this system is able to split water into hydrogen and oxygen for more than 100 hours with a solar-to-hydrogen energy conversion efficiency of 0.22%. In contrast to many existing photocatalytic systems, the water splitting activity of the present system is only minimally reduced by increasing the background pressure to 90 kPa. These results suggest characteristics suitable for applications under practical operating conditions.

11.
Nat Commun ; 14(1): 8030, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38049410

RESUMEN

A long-standing trade-off exists between improving crystallinity and minimizing particle size in the synthesis of perovskite-type transition-metal oxynitride photocatalysts via the thermal nitridation of commonly used metal oxide and carbonate precursors. Here, we overcome this limitation to fabricate ATaO2N (A = Sr, Ca, Ba) single nanocrystals with particle sizes of several tens of nanometers, excellent crystallinity and tunable long-wavelength response via thermal nitridation of mixtures of tantalum disulfide, metal hydroxides (A(OH)2), and molten-salt fluxes (e.g., SrCl2) as precursors. The SrTaO2N nanocrystals modified with a tailored Ir-Pt alloy@Cr2O3 cocatalyst evolved H2 around two orders of magnitude more efficiently than the previously reported SrTaO2N photocatalysts, with a record solar-to-hydrogen energy conversion efficiency of 0.15% for SrTaO2N in Z-scheme water splitting. Our findings enable the synthesis of perovskite-type transition-metal oxynitride nanocrystals by thermal nitridation and pave the way for manufacturing advanced long-wavelength-responsive particulate photocatalysts for efficient solar energy conversion.

12.
Nat Commun ; 14(1): 7806, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052780

RESUMEN

Grain-boundary atomic structures of crystalline materials have long been believed to be commensurate with the crystal periodicity of the adjacent crystals. In the present study, we experimentally observed a Σ9 grain-boundary atomic structure of a bcc crystal (Fe-3%Si). It is found that the Σ9 grain-boundary structure is largely reconstructed and forms a dense packing of icosahedral clusters in its core. Combining with the detailed theoretical calculations, the Σ9 grain-boundary atomic structure is discovered to be incommensurate with the adjacent crystal structures. The present findings shed new light on the study of stable grain-boundary atomic structures in crystalline materials.

13.
Microscopy (Oxf) ; 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38155605

RESUMEN

A magnetic tunnel junction (MTJ) consists of two ferromagnetic layers separated by a thin insulating layer. MTJs show tunnel magnetoresistance effect, where the resistance in the direction perpendicular to the insulator layer drastically changes depending on the magnetization directions (parallel or antiparallel) in the ferromagnetic layers. However, direct observation of local magnetizations inside MTJs have been challenging. In this study, we demonstrate direct observation of magnetic flux density distribution inside epitaxially grown Fe/MgO/Fe layers using differential phase contrast scanning transmission electron microscopy. By utilizing newly-developed tilt-scan averaging system for suppressing diffraction contrasts, we clearly visualize parallel and antiparallel states of ferromagnetic layers at nanometer resolution.

14.
Microsc Microanal ; 29(Supplement_1): 1372-1373, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37613821
15.
Sci Adv ; 9(31): eadf6865, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37531431

RESUMEN

Zeolites are used in industries as catalysts, ion exchangers, and molecular sieves because of their unique porous atomic structures. However, direct observation of zeolitic local atomic structures via electron microscopy is difficult owing to low electron irradiation resistance. Subsequently, their fundamental structure-property relationships remain unclear. A low-electron-dose imaging technique, optimum bright-field scanning transmission electron microscopy (OBF STEM), has recently been developed. It reconstructs images with a high signal-to-noise ratio and a dose efficiency approximately two orders of magnitude higher than that of conventional methods. Here, we performed low-dose atomic-resolution OBF STEM observations of two types of zeolite, effectively visualizing all atomic sites in their frameworks. In addition, we visualized the complex local atomic structure of the twin boundaries in a faujasite (FAU)-type zeolite and Na+ ions with low occupancy in eight-membered rings in a Na-Linde Type A (LTA) zeolite. The results of this study facilitate the characterization of local atomic structures in many electron beam-sensitive materials.

16.
Angew Chem Int Ed Engl ; 62(42): e202310607, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37653542

RESUMEN

Photocatalytic water splitting is an ideal means of producing hydrogen in a sustainable manner, and developing highly efficient photocatalysts is a vital aspect of realizing this process. The photocatalyst Y2 Ti2 O5 S2 (YTOS) is capable of absorbing at wavelengths up to 650 nm and exhibits outstanding thermal and chemical durability compared with other oxysulfides. However, the photocatalytic performance of YTOS synthesized using the conventional solid-state reaction (SSR) process is limited owing to the large particle sizes and structural defects associated with this synthetic method. Herein, we report the synthesis of YTOS particles by a flux-assisted technique. The enhanced mass transfer efficiency in the flux significantly reduced the preparation time compared with the SSR method. In addition, the resulting YTOS showed improved photocatalytic H2 and O2 evolution activity when loaded with Rh and Co3 O4 co-catalysts, respectively. These improvements are attributed to the reduced particle size and enhanced crystallinity of the material as well as the slower decay of photogenerated carriers on a nanosecond to sub-microsecond time range. Further optimization of this flux-assisted method together with suitable surface modification is expected to produce high-quality YTOS crystals with superior photocatalytic activity.

17.
Ultramicroscopy ; 253: 113811, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37499573

RESUMEN

In this study, we proposed a fast method of reconstruction for scanning transmission electron microscopy images. The proposed method is based on the Markov random field model and Bayesian inference, and we found that the method can reconstruct such images of sizes 512 × 512 and 264 × 240 in less than 200 ms and 100 ms, respectively. Furthermore, we showed that the method of reconstruction from multiple images without averaging them has better reconstruction performance than that from the averaged image.

18.
Nat Nanotechnol ; 18(5): 521-528, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36941362

RESUMEN

Mobile charge carriers are essential components in high-performance, nano-engineered semiconductor devices. Employing charge carriers confined to heterointerfaces, the so-called two-dimensional electron gas, is essential for improving device performance. The real-space visualization of a two-dimensional electron gas at the nanometre scale is desirable. However, it is challenging to accomplish by means of electron microscopy due to an unavoidable strong diffraction contrast formation at the heterointerfaces. We performed direct, nanoscale electric field imaging across a GaN-based semiconductor heterointerface using differential phase contrast scanning transmission electron microscopy by suppressing diffraction contrasts. For both nearly the lattice-matched GaN/Al0.81In0.19N interface and pseudomorphic GaN/Al0.88In0.12N interface, the extracted quantitative electric field profiles show excellent agreement with profiles predicted using Poisson simulation. Furthermore, we used the electric field profiles to quantify the density and distribution of the two-dimensional electron gas across the heterointerfaces with nanometre precision. This study is expected to guide the real-space characterization of local charge carrier density and distribution in semiconductor devices.

19.
Chemistry ; 29(24): e202204058, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-36764932

RESUMEN

The hydrogen evolution reaction (HER) of Rh nanoparticles (RhNP) coated with an ultrathin layer of Cr-oxides (CrOx ) was investigated as a model electrode for the Cr2 O3 /Rh-metal core-shell-type cocatalyst system for photocatalytic water splitting. The CrOx layer was electrodeposited over RhNP on a transparent conductive fluorine-doped tin oxide (FTO) substrate. The CrOx layer on RhNP facilitates the electron transfer process at the CrOx /RhNP interface, leading to the increased current density for the HER. Impedance spectroscopic analysis revealed that the CrOx layer transferred protons via the hopping mechanism to the RhNP surface for HER. In addition, CrOx restricted electron transfer from the FTO to the electrolyte and/or RhNP and suppressed the backward reaction by limiting oxygen migration. This study clarifies the crucial role of the ultrathin CrOx layer on nanoparticulate cocatalysts and provides a cocatalyst design strategy for realizing efficient photocatalytic water splitting.

20.
J Am Chem Soc ; 145(7): 3839-3843, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36669205

RESUMEN

The development of narrow-bandgap photocatalysts for one-step-excitation overall water splitting (OWS) remains a critical challenge in the field of solar hydrogen production. SrTaO2N is a photocatalytic material having a band structure suitable for OWS under visible light (λ ≤ 600 nm). However, the presence of defects in the oxynitride and the lack of cocatalysts to promote simultaneous hydrogen and oxygen evolution make it challenging to realize OWS using this material. The present work demonstrates a SrTaO2N-based particulate photocatalyst for OWS. This photocatalyst, which was composed of single crystals, was obtained by nitriding SrCl2 and Ta2O5 together with NaOH, with the latter added to control the formation of defects. The subsequent loading of bimetallic RuIrOx nanoparticles accelerated charge separation and allowed the SrTaO2N photocatalyst to exhibit superior OWS activity. This research presenting the strategies of controlling the oxygen sources and promoting the cocatalyst function is expected to expand the range of potential OWS-active oxynitride photocatalysts and permit the design of efficient cocatalysts for photocatalytic OWS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...