Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(6): 110032, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38868195

RESUMEN

Evaluation of the binding affinities of drugs to proteins is a crucial process for identifying drug pharmacological actions, but it requires three dimensional structures of proteins. Herein, we propose novel computational methods to predict the therapeutic indications and side effects of drug candidate compounds from the binding affinities to human protein structures on a proteome-wide scale. Large-scale docking simulations were performed for 7,582 drugs with 19,135 protein structures revealed by AlphaFold (including experimentally unresolved proteins), and machine learning models on the proteome-wide binding affinity score (PBAS) profiles were constructed. We demonstrated the usefulness of the method for predicting the therapeutic indications for 559 diseases and side effects for 285 toxicities. The method enabled to predict drug indications for which the related protein structures had not been experimentally determined and to successfully extract proteins eliciting the side effects. The proposed method will be useful in various applications in drug discovery.

2.
Bioorg Med Chem Lett ; 93: 129438, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37549852

RESUMEN

GLS1 is an attractive target not only as anticancer agents but also as candidates for various potential pharmaceutical applications such as anti-aging and anti-obesity treatments. We performed docking simulations based on the complex crystal structure of GLS1 and its inhibitor CB-839 and found that compound A bearing a thiadiazole skeleton exhibits GLS1 inhibition. Furthermore, we synthesized 27 thiadiazole derivatives in an effort to obtain a more potent GLS1 inhibitor. Among the synthesized derivatives, 4d showed more potent GLS1 inhibitory activity (IC50 of 46.7 µM) than known GLS1 inhibitor DON and A. Therefore, 4d is a very promising novel GLS1 inhibitor.


Asunto(s)
Antineoplásicos , Tiadiazoles , Antineoplásicos/farmacología , Glutaminasa/antagonistas & inhibidores , Tiadiazoles/farmacología , Tiadiazoles/química
3.
Drug Dev Res ; 84(1): 75-83, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36484282

RESUMEN

Proton pump inhibitors (PPIs) are potent inhibitors of gastric acid secretion, used as first-line agents in treating peptic ulcers. However, we have previously reported that PPIs may diminish the therapeutic effect of anti-vascular endothelial growth factor (VEGF) drugs in patients with cancer. In this study, we explored the effects of vonoprazan, a novel gastric acid secretion inhibitor used for the treatment of peptic ulcers, on the secretion of VEGF in cancer cells and attempted to propose it as an alternative PPI for cancer chemotherapy. The effects of PPI and vonoprazan on VEGF expression in cancer cells were compared by real-time reverse transcription-polymerase chain reaction and ELISA. The interaction of vonoprazan and PPIs with transcriptional regulators by docking simulation analysis. In various cancer cell lines, including the human colorectal cancer cell line (LS174T), PPI increased VEGF messenger RNA expression and VEGF protein secretion, while this effect was not observed with vonoprazan. Molecular docking simulation analysis showed that vonoprazan had a lower binding affinity for estrogen receptor alpha (ER-α), one of the transcriptional regulators of VEGF, compared to PPI. Although the PPI-induced increase in VEGF expression was counteracted by pharmacological ER-α inhibition, the effect of vonoprazan on VEGF expression was unchanged. Vonoprazan does not affect VEGF expression in cancer cells, which suggests that vonoprazan might be an alternative to PPIs, with no interference with the therapeutic effects of anti-VEGF cancer chemotherapy.


Asunto(s)
Neoplasias , Úlcera Péptica , Humanos , Inhibidores de la Bomba de Protones/efectos adversos , Factores de Crecimiento Endotelial , Simulación del Acoplamiento Molecular , Úlcera Péptica/inducido químicamente , Úlcera Péptica/tratamiento farmacológico , Pirroles/farmacología , Neoplasias/tratamiento farmacológico
4.
Inorg Chem ; 60(2): 1021-1027, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33356193

RESUMEN

Mössbauer spectroscopy has been used to characterize oxygenated myoglobins (oxy Mbs) reconstituted with native and chemically modified 57Fe-enriched heme cofactors with different electron densities of the heme Fe atom (ρFe) and to elucidate the effect of a change in the ρFe on the nature of the bond between heme Fe and oxygen (O2), i.e., the Fe-O2 bond, in the protein. Quadrupole splitting (ΔEQ) was found to decrease with decreasing ρFe, and the observed ρFe-dependent ΔEQ confirmed an increase in the contribution of the ferric-superoxide (Fe3+-O2-) form to the resonance hybrid of the Fe-O2 fragment with decreasing ρFe. These observations explicitly accounted for the lowering of O2 affinity of the protein due to an increase in the O2 dissociation rate and a decrease in the autoxidation reaction rate of oxy Mb through decreasing H+ affinity of the bound ligand with decreasing ρFe. Therefore, the present study demonstrated the mechanism underlying the electronic control of O2 affinity and the autoxidation of the protein through the heme electronic structure. Carbon monoxide (CO) adducts of reconstituted Mbs (CO-Mbs) were similarly characterized, and we found that the resonance between the two canonical forms of the Fe-CO fragment was also affected by a change in ρFe. Thus, the nature of the Fe-ligand bond in the protein was found to be affected by the ρFe.


Asunto(s)
Hemo/química , Hierro/química , Mioglobina/química , Oxígeno/química , Monóxido de Carbono/química , Electrones , Estructura Molecular , Espectroscopía de Mossbauer
5.
Mol Inform ; 39(1-2): e1900134, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31778042

RESUMEN

Food proteins work not only as nutrients but also modulators for the physiological functions of the human body. The physiological functions of food proteins are basically regulated by peptides encrypted in food protein sequences (food peptides). In this study, we propose a novel deep learning-based method to predict the health effects of food peptides and elucidate the mode-of-action. In the algorithm, we estimate potential target proteins of food peptides using a multi-task graph convolutional neural network, and predict its health effects using information about therapeutic targets for diseases. We constructed predictive models based on 21,103 peptide-protein interactions involving 10,950 peptides and 2,533 proteins, and applied the models to food peptides (e. g., lactotripeptide, isoleucyltyrosine and sardine peptide) defined in food for specified health use. The models suggested potential effects such as blood-pressure lowering effects, blood glucose level lowering effects, and anti-cancer effects for several food peptides. The interactions of food peptides with target proteins were confirmed by docking simulations.


Asunto(s)
Algoritmos , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Redes Neurales de la Computación , Péptidos/farmacología , Antineoplásicos/química , Glucemia/análisis , Presión Sanguínea/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , Péptidos/química
6.
Biochemistry ; 57(48): 6649-6652, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30422640

RESUMEN

The molecular mechanism of O2 binding to hemoglobin (Hb) and myoglobin (Mb) is a long-standing issue in the field of bioinorganic and biophysical chemistry. The nature of Fe-O2 bond in oxy Hb and Mb had been extensively investigated by resonance Raman spectroscopy, which assigned the Fe-O2 stretching bands at ∼570 cm-1. However, resonance Raman assignment of the vibrational mode had been elusive due to the spectroscopic selection rule and to the limited information available about the ground-state molecular structure. Thus, nuclear resonance vibrational spectroscopy was applied to oxy Mbs reconstituted with 57Fe-labeled native heme cofactor and two chemically modified ones. This advanced spectroscopy in conjunction with DFT analyses gave new insights into the nature of the Fe-O2 bond of oxy heme by revealing the effect of heme peripheral substitutions on the vibrational dynamics of heme Fe atom, where the main Fe-O2 stretching band of the native protein was characterized at ∼420 cm-1.


Asunto(s)
Mioglobina/química , Animales , Sitios de Unión , Hemo/química , Hemo/metabolismo , Hierro/química , Hierro/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Mioglobina/metabolismo , Oxígeno/química , Oxígeno/metabolismo , Conformación Proteica , Espectrometría Raman , Cachalote , Vibración
7.
Inorg Chem ; 57(22): 14269-14279, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30387349

RESUMEN

In the L29F variant of myoglobin (Mb), the coordination of oxygen (O2) to the heme Fe atom is stabilized by favorable electrostatic interactions between the polar Fe-O2 moiety and the multipole of the phenyl ring of the Phe29 side chain (Phe29 interaction), in addition to the well-known hydrogen bond (H-bond) between the Fe-bound O2 and the 64th residue (distal H-bond; Carver, T. E.; Brantley, R. E., Jr.; Singleton, E. W.; Arduini, R. M.; Quillin, M. L.; Phillips, G. N., Jr.; Olson, J. S. J. Biol. Chem. 1992, 267, 14443-14450). The O2 and carbon monoxide (CO) binding properties and autoxidation of the L29F/H64L and L29F/H64Q variants reconstituted with a series of chemically modified heme cofactors were analyzed and then compared with those of native Mb, and the L29F, H64Q, and H64L variants similarly reconstituted with the chemically modified heme cofactors in order to elucidate the relationship between the Phe29 interaction and the distal H-bond that critically contributes to stabilization of Fe-bound O2. We found that the Phe29 interaction and distal H-bond act cooperatively to stabilize the Fe-bound O2 in such a manner that the Phe29 interaction strengthens with increasing strength of the distal H-bond. Comparison of the functional properties between the L29F and H64L variants indicated that the synergistic effect of the two interactions decreases the O2 dissociation and autoxidation rate constants of the protein by factors of ∼1/2000 and ∼1/400, respectively. Although the CO binding properties of the proteins were not greatly affected by the distal polar interactions, their synergistic effects were clearly and sharply manifested in the vibrational frequencies of the Fe-bound C-O stretching of the proteins.


Asunto(s)
Monóxido de Carbono/metabolismo , Hierro/química , Mioglobina/metabolismo , Oxígeno/metabolismo , Animales , Monóxido de Carbono/química , Hemo/química , Enlace de Hidrógeno , Cinética , Ligandos , Mutación , Mioglobina/química , Mioglobina/genética , Oxidación-Reducción , Oxígeno/química , Unión Proteica , Cachalote , Electricidad Estática
8.
Biochemistry ; 57(41): 5938-5948, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30234971

RESUMEN

Heme in its ferrous and ferric states [heme(Fe2+) and heme(Fe3+), respectively] binds selectively to the 3'-terminal G-quartet of all parallel-stranded monomeric G-quadruplex DNAs formed from inosine(I)-containing sequences, i.e., d(TAGGGTGGGTTGGGTGIG) DNA(18mer) and d(TAGGGTGGGTTGGGTGIGA) DNA(18mer/A), through a π-π stacking interaction between the porphyrin moiety of the heme and the G-quartet, to form 1:1 complexes [heme-DNA(18mer) and heme-DNA(18mer/A) complexes, respectively]. These complexes exhibited enhanced peroxidase activities, compared with that of heme(Fe3+) alone, and the activity of the heme(Fe3+)-DNA(18mer/A) complex was greater than that of the heme(Fe3+)-DNA(18mer) one, indicating that the 3'-terminal A of the DNA sequence acts as an acid-base catalyst that promotes the catalytic reaction. In the complexes, a water molecule (H2O) at the interface between the heme and G-quartet is coordinated to the heme Fe atom as an axial ligand and possibly acts as an electron-donating ligand that promotes heterolytic peroxide bond cleavage of hydrogen peroxide bound to the heme Fe atom, trans to the H2O, for the generation of an active species. The intermolecular nuclear Overhauser effects observed among heme, DNA, and Fe-bound H2O indicated that the H2O rotates about the H2O-Fe coordination bond with respect to both the heme and DNA in the complex. Thus, the H2O in the complex is unique in terms of not only its electronic properties but also its dynamic ones. These findings provide novel insights into the design of heme-deoxyribozymes and -ribozymes.


Asunto(s)
ADN Catalítico/química , G-Cuádruplex , Hemo/química , Hierro/química , Peroxidasas/química , Catálisis , Oxidación-Reducción
9.
Biochemistry ; 57(41): 5930-5937, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30207701

RESUMEN

Heme binds selectively to the 3'-terminal G-quartet (G6 G-quartet) of an all parallel-stranded tetrameric G-quadruplex DNA, [d(TTAGGG)]4, to form a heme-DNA complex. Complexes between [d(TTAGGG)]4 and a series of chemically modified hemes possessing a heme Fe atom with a variety of electron densities were characterized in terms of their peroxidase activities to evaluate the effect of a change in the electron density of the heme Fe atom (ρFe) on their activities. The peroxidase activity of a complex decreased with a decreasing ρFe, supporting the idea that the activity of the complex is elicited through a reaction mechanism similar to that of a peroxidase. In the ferrous heme-DNA complex, carbon monoxide (CO) can bind to the heme Fe atom on the side of the heme opposite the G6 G-quartet, and a water molecule (H2O) is coordinated to the Fe atom as another axial ligand, trans to the CO. The stretching frequencies of Fe-bound CO (νCO) and the Fe-C bond (νFe-C) of CO adducts of the heme-DNA complexes were determined to investigate the structural and electronic natures of the axial ligands coordinated to the heme Fe atom. Comparison of the νCO and νFe-C values of the heme-DNA complexes with those of myoglobin (Mb) revealed that the donor strength of the axial ligation trans to the CO in a complex is considerably weaker than that of the proximal histidine in Mb, as expected from the coordination of H2O trans to the CO in the complex.


Asunto(s)
Monóxido de Carbono/química , ADN/química , G-Cuádruplex , Hierro/química , Modelos Moleculares , Agua/química
10.
Chem Commun (Camb) ; 54(32): 3944-3946, 2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-29610814

RESUMEN

Until now, RNA G-quadruplexes were believed to only adopt a parallel G-quadruplex structure. In this study, we describe the first observation of an antiparallel RNA G-quadruplex formed by human telomere RNA. This newly described topology is of great interest as it shows that RNA G-quadruplexes can also be polymorphic and adopt structures that are different from the parallel configuration.


Asunto(s)
G-Cuádruplex , ARN/química , Telómero/genética , Secuencia de Bases , Dicroismo Circular , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Humanos
11.
Biochemistry ; 56(34): 4500-4508, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28758387

RESUMEN

The orientation of a CF3-substituted heme in sperm whale myoglobin and L29F, H64L, L29F/H64Q, and H64Q variant proteins has been investigated using 19F NMR spectroscopy to elucidate structural factors responsible for the thermodynamic stability of the heme orientational disorder, i.e., the presence of two heme orientations differing by a 180° rotation about the 5-15 meso axis, with respect to the protein moiety. Crystal structure of the met-aquo form of the wild-type myoglobin reconstituted with 13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2,12,18-trimethyl-7-trifluoromethylporphyrinatoiron(III), determined at resolution of 1.25 Å, revealed the presence of the heme orientational disorder. Alterations of the salt bridge between the heme 13-propionate and Arg45(CD3) side chains due to the mutations resulted in equilibrium constants of the heme orientational disorder ranging between 0.42 and 1.4. Thus, the heme orientational disorder is affected by the salt bridge associated with the heme 13-propionate side chain, confirming the importance of the salt bridge in the heme binding to the protein.


Asunto(s)
Hemo/química , Mutación Missense , Mioglobina/química , Sustitución de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , Hemo/metabolismo , Mioglobina/genética , Mioglobina/metabolismo , Cachalote
12.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt B): 1264-1270, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27836758

RESUMEN

Structure-function relationships of complexes between heme and G-quadruplex DNAs have attracted interest from researchers in related fields. A carbon monoxide adduct of a complex between heme and a parallel G-quadruplex DNA formed from hexanucleotide d(TTGAGG) (heme-[d(TTGAGG)]4 complex) has been characterized using 1H NMR spectroscopy, and the obtained results were compared with those for the heme-[d(TTAGGG)]4 complex previously studied in order to elucidate the effect of the incorporation of an A-quartet into stacked G-quartets in the 3'-terminal region of the DNA on the structure of the heme-DNA complex. We found that a π-π stacking interaction between the porphyrin moiety of the heme and the 3'-terminal G-quartet of the DNA is affected by the nature of the stacked G-quartets. This finding provides novel insights as to the design of the molecular architecture of a heme-DNA complex. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.


Asunto(s)
G-Cuádruplex , Hemo/química , Oligonucleótidos/química , Sitios de Unión , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Hemo/metabolismo , Modelos Moleculares , Desnaturalización de Ácido Nucleico , Oligonucleótidos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Espectroscopía de Protones por Resonancia Magnética , Relación Estructura-Actividad , Temperatura
13.
Inorg Chem ; 55(23): 12128-12136, 2016 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-27934434

RESUMEN

We introduced trifluoromethyl (CF3) group(s) as heme side chain(s) of sperm whale myoglobin (Mb) in order to characterize the electronic nature of heme Fe(II) in deoxy Mb using 19F NMR spectroscopy. On the basis of the anti-Curie behavior of CF3 signals, we found that the deoxy Mb is in thermal equilibrium between the 5B2, (dxy)2(dxz)(dyz)(dz2)(dx2-y2), and 5E, (dxy)(dxz)2(dyz)(dz2)(dx2-y2), states of the heme Fe(II), i.e., 5B2 ⇆ 5E. Analysis of the curvature in Curie plots has yielded for the first time ΔH and ΔS values of ∼-20 kJ mol-1 and ∼-60 J K-1 mol-1, respectively, for the thermal equilibrium. Thus, the 5E state is slightly dominant over the 5B2 one at 25 °C. These findings provide not only valuable information about the ground state electronic structure of the high-spin heme Fe(II) in deoxy native Mb but also an important clue for elucidating the mechanism responsible for acceleration of the spin-forbidden oxygenation of the protein.


Asunto(s)
Compuestos Ferrosos/química , Hemo/química , Mioglobina/química , Complejos de Coordinación/química , Electrones , Ligandos , Espectroscopía de Resonancia Magnética , Temperatura
14.
Inorg Chem ; 55(4): 1613-22, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26814981

RESUMEN

We analyzed the oxygen (O2) and carbon monoxide (CO) binding properties, autoxidation reaction rate, and FeO2 and FeCO vibrational frequencies of the H64Q mutant of sperm whale myoglobin (Mb) reconstituted with chemically modified heme cofactors possessing a variety of heme Fe electron densities (ρ(Fe)), and the results were compared with those for the previously studied native [Shibata, T. et al. J. Am. Chem. Soc. 2010, 132, 6091-6098], and H64L [Nishimura, R. et al. Inorg. Chem. 2014, 53, 1091-1099], and L29F [Nishimura, R. et al. Inorg. Chem. 2014, 53, 9156-9165] mutants in order to elucidate the effect of changes in the heme electronic structure and distal polar interaction contributing to stabilization of the Fe-bound ligand on the functional and vibrational properties of the protein. The study revealed that, as in the cases of the previously studied native protein [Shibata, T. et al. Inorg. Chem. 2012, 51, 11955-11960], the O2 affinity and autoxidation reaction rate of the H64Q mutant decreased with a decrease in ρ(Fe), as expected from the effect of a change in ρ(Fe) on the resonance between the Fe(2+)-O2 bond and Fe(3+)-O2(-)-like species in the O2 form, while the CO affinity of the protein is independent of a change in ρ(Fe). We also found that the well-known inverse correlation between the frequencies of Fe-bound CO (ν(CO)) and Fe-C (ν(FeC)) stretching [Li, X.-Y.; Spiro, T. G. J. Am. Chem. Soc. 1988, 110, 6024-6033] is affected differently by changes in ρ(Fe) and the distal polar interaction, indicating that the effects of the two electronic perturbations due to the chemical modification of a heme cofactor and the replacement of nearby amino acid residues on the resonance between the two alternative canonical forms of the FeCO fragment in the protein are slightly different from each other. These findings provide a new insight for deeper understanding of the functional regulation of the protein.


Asunto(s)
Hemo/química , Mioglobina/química , Cinética , Espectroscopía de Protones por Resonancia Magnética , Espectrometría Raman
15.
Biochemistry ; 54(49): 7168-77, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26595799

RESUMEN

Heme {Fe(II)- or Fe(III)-protoporphyrin IX complex [heme(Fe(2+)) or heme(Fe(3+)), respectively]} binds selectively to the 3'-terminal G-quartet of a parallel G-quadruplex DNA formed from a single repeat sequence of the human telomere, d(TTAGGG), through a π-π stacking interaction between the porphyrin moiety of the heme and the G-quartet. The binding affinities of some chemically modified hemes(Fe(3+)) for DNA and the structures of complexes between the modified hemes(Fe(2+)) and DNA, with carbon monoxide (CO) coordinated to the heme Fe atom on the side of the heme opposite the G6 G-quartet, have been characterized to elucidate the interaction between the heme and G-quartet in the complexes through analysis of the effects of the heme modification on the structural properties of the complex. The study revealed that the binding affinities and structures of the complexes were barely affected by the heme modification performed in the study. Such plasticity in the binding of heme to the G-quartet is useful for the versatile design of the complex through heme chemical modification and DNA sequence alteration. Furthermore, exchangeable proton signals exhibiting two-proton intensity were observed at approximately -3.5 ppm in the (1)H nuclear magnetic resonance (NMR) spectra of the CO adducts of the complexes. Through analysis of the NMR results, together with theoretical consideration, we concluded that the heme(Fe(2+)) axial ligand trans to CO in the complex is a water molecule (H2O). Identification of the Fe-bound H2O accommodated between the heme and G-quartet planes in the complex provides new insights into the structure-function relationship of the complex.


Asunto(s)
Monóxido de Carbono/química , ADN/química , G-Cuádruplex , Hemo/química , Hierro/química , Espectroscopía de Resonancia Magnética
16.
Inorg Chem ; 53(17): 9156-65, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25111253

RESUMEN

The L29F mutant of sperm whale myoglobin (Mb), where the leucine 29 residue was replaced by phenylalanine (Phe), was shown to exhibit remarkably high affinity to oxygen (O2), possibly due to stabilization of the heme Fe atom-bound O2 in the mutant protein through a proposed unique electrostatic interaction with the introduced Phe29, in addition to well-known hydrogen bonding with His64 [Carver, T. E.; Brantley, R. E.; Singleton, E. W.; Arduini, R. M.; Quillin, M. L.; Phillips, G. N., Jr.; Olson, J. S. J. Biol. Chem., 1992, 267, 14443-14450]. We analyzed the O2 and carbon monoxide (CO) binding properties of the L29F mutant protein reconstituted with chemically modified heme cofactors possessing a heme Fe atom with various electron densities, to determine the effect of a change in the electron density of the heme Fe atom (ρ(Fe)) on the O2 versus CO discrimination. The study demonstrated that the preferential binding of O2 over CO by the protein was achieved through increasing ρ(Fe), and the ordinary ligand-binding preference, that is, the preferential binding of CO over O2, by the protein was achieved through decreasing ρ(Fe). Thus, the O2 and CO binding preferences of the L29F mutant protein could be controlled through electronic modulation of intrinsic heme Fe reactivity through a change in ρ(Fe). The present study highlighted the significance of the tuning of the intrinsic heme Fe reactivity through the heme electronic structure in functional regulation of Mb.


Asunto(s)
Mutación , Mioglobina/metabolismo , Ligandos , Mioglobina/genética , Espectroscopía de Protones por Resonancia Magnética
17.
Inorg Chem ; 53(2): 1091-9, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24377722

RESUMEN

We analyzed the oxygen (O2) and carbon monoxide (CO) binding properties of the H64L mutant of myoglobin reconstituted with chemically modified heme cofactors possessing a heme Fe atom with a variety of electron densities, in order to elucidate the effect of the removal of the distal His64 on the control of both the O2 affinity and discrimination between O2 and CO of the protein by the intrinsic heme Fe reactivity through the electron density of the heme Fe atom (ρFe). The study revealed that, as in the case of the native protein, the O2 affinity of the H64L mutant protein is regulated by the ρFe value in such a manner that the O2 affinity of the protein decreases, due to an increase in the O2 dissociation rate constant, with a decrease in the ρFe value, and that the O2 affinities of the mutant and native proteins are affected comparably by a given change in the ρFe value. On the other hand, the CO affinity of the H64L mutant protein was found to increase, due to a decrease in the CO dissociation rate constant, with a decrease in the ρFe value, whereas that of the native protein was essentially independent of a change in the ρFe value. As a result, the regulation of the O2/CO discrimination in the protein through the ρFe value is affected by the distal His64. Thus, the study revealed that the electronic tuning of the intrinsic heme Fe reactivity through the ρFe value plays a vital role in the regulation of the protein function, as the heme environment furnished by the distal His64 does.


Asunto(s)
Monóxido de Carbono/metabolismo , Electrones , Histidina , Mutación , Mioglobina/química , Mioglobina/metabolismo , Oxígeno/metabolismo , Animales , Hemo/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mioglobina/genética , Especificidad por Sustrato , Vibración
18.
Biochemistry ; 52(28): 4800-9, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23796250

RESUMEN

In cytochrome c, the coordination of the axial Met Sδ atom to the heme Fe atom occurs in one of two distinctly different stereochemical manners, i.e., R and S configurations, depending upon which of the two lone pairs of the Sδ atom is involved in the bond; hence, the Fe-coordinated Sδ atom becomes a chiral center. In this study, we demonstrated that an alteration of amino acid side chain packing induced by the mutation of a single amino acid residue, i.e., the A73V mutation, in Hydrogenobacter thermophilus cytochrome c552 (HT) forces the inversion of the stereochemistry around the Sδ atom from the R configuration [Travaglini-Allocatelli, C., et al. (2005) J. Biol. Chem. 280, 25729-25734] to the S configuration. Functional comparison between the wild-type HT and the A73V mutant possessing the R and S configurations as to the stereochemistry around the Sδ atom, respectively, demonstrated that the redox potential (Em) of the mutant at pH 6.00 and 25 °C exhibited a positive shift of ∼20 mV relative to that of the wild-type HT, i.e., 245 mV, in an entropic manner. Because these two proteins have similar enthalpically stabilizing interactions, the difference in the entropic contribution to the Em value between them is likely to be due to the effect of the conformational alteration of the axial Met side chain associated with the inversion of the stereochemistry around the Sδ atom due to the effect of mutation on the internal mobility of the loop bearing the axial Met. Thus, the present study demonstrated that the internal mobility of the loop bearing the axial Met, relevant to entropic control of the redox function of the protein, is affected quite sensitively by the contextual stereochemical packing of amino acid side chains in the proximity of the axial Met.


Asunto(s)
Aminoácidos/química , Bacterias/enzimología , Grupo Citocromo c/química , Metionina/química , Azufre/química , Secuencia de Aminoácidos , Dicroismo Circular , Grupo Citocromo c/genética , Grupo Citocromo c/metabolismo , Estabilidad de Enzimas , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Resonancia Magnética Nuclear Biomolecular , Estereoisomerismo , Temperatura
19.
Inorg Chem ; 52(6): 3349-55, 2013 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-23445324

RESUMEN

We analyzed the vibrational frequencies of the Fe-bound carbon monoxide (CO) of myoglobin reconstituted with a series of chemically modified heme cofactors possessing a heme Fe atom with a variety of electron densities. The study revealed that the stretching frequency of Fe-bound CO (ν(CO)) increases with decreasing electron density of the heme Fe atom (ρ(Fe)). This finding demonstrated that the ν(CO) value can be used as a sensitive measure of the ρ(Fe) value and that the π back-donation of the heme Fe atom to CO is affected by the heme π-system perturbation induced through peripheral side chain modifications.


Asunto(s)
Monóxido de Carbono/metabolismo , Electrones , Hemo/química , Hemo/metabolismo , Hierro/química , Mioglobina/metabolismo , Animales , Cinética , Vibración
20.
Inorg Chem ; 51(21): 11955-60, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23082875

RESUMEN

Studies using myoglobins reconstituted with a variety of chemically modified heme cofactors revealed that the oxygen affinity and autoxidation reaction rate of the proteins are highly correlated to each other, both decreasing with decreasing the electron density of the heme iron atom. An Fe(3+)-O(2)(-)-like species has been expected for the Fe(2+)-O(2) bond in the protein, and the electron density of the heme iron atom influences the resonance process between the two forms. A shift of the resonance toward the Fe(2+)-O(2) form results in lowering of the O(2) affinity due to an increase in the O(2) dissociation rate. On the other hand, a shift of the resonance toward the Fe(3+)-O(2)(-)-like species results in acceleration of the autoxidation through increasing H(+) affinity of the bound ligand.


Asunto(s)
Mioglobina/metabolismo , Oxígeno/metabolismo , Animales , Hemo/química , Hemo/metabolismo , Cinética , Ligandos , Mioglobina/química , Oxidación-Reducción , Oxígeno/química , Espectrofotometría Ultravioleta , Ballenas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...