Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Cureus ; 16(5): e60656, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38899261

RESUMEN

PURPOSE: Motion artifacts caused by heart motion during myocardial perfusion single-photon emission computed tomography (SPECT) can compromise image quality and diagnostic accuracy. This study aimed to evaluate the efficacy of the novel respiratory motion reduction block (RRB) device in reducing motion artifacts by compressing the hypochondrium and improving SPECT image quality. METHODS: In total, 91 patients who underwent myocardial perfusion SPECT with 99mTc-sestamibi were retrospectively analyzed. Patients (n = 28) who underwent SPECT without the RRB were included in the control group, and those (n = 63) who underwent SPECT with the RRB were in the RRB group. The distance of heart motion during dynamic acquisition was measured, and projection data were assessed for patient motion and motion artifacts. Patient motion was classified into various levels, and motion artifacts on SPECT images were visually examined. RESULTS: The distances of heart motion without and with the RRB were 15.4 ± 5.3 and 7.5 ± 2.3, respectively. Compared with the control group, the RRB group had a lower frequency of heart motion based on the projection data, particularly in terms of creep and shift motion. The RRB group had a significantly lower incidence of motion artifacts on SPECT images than the control group. CONCLUSIONS: The RRB substantially reduced specific types of motion, such as shift and creep, and had a low influence on bounce motion. However, it could effectively suppress respiratory-induced heart motion and reduce motion artifacts on myocardial perfusion SPECT, thereby emphasizing its potential for improving image quality.

2.
EJNMMI Rep ; 8(1): 15, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822219

RESUMEN

BACKGROUND AND PURPOSE: The ability of [123I]metaiodobenzylguanidine (MIBG) sympathetic nerve imaging with three-dimensional (3D) quantitation to clinically diagnose neurological disorders has not been evaluated. This study compared absolute heart counts calculated as mean standardized uptake values (SUVmean) using conventional planar imaging and assessed the contribution of [123I]MIBG single-photon emission computed tomography (SPECT)-CT to the diagnosis of neurological diseases. METHODS: Seventy-two patients with neurological diseases were consecutively assessed using early and delayed [123I]MIBG SPECT-CT and planar imaging. Left ventricles were manually segmented in early and delayed SPECT-CT images, then the SUVmean and washout rates (WRs) were calculated. Heart-to-mediastinum ratios (HMRs) and WRs on planar images were conventionally computed. We investigated correlations between planar HMRs and SPECT-CT SUVmeans and between WRs obtained from planar and SPECT-CT images. The cutoff for SPECT-CT WRs defined by linear regression and that of normal planar WRs derived from a database were compared with neurological diagnoses of the patients. We assigned the patients to groups according to clinical diagnoses as controls (n = 6), multiple system atrophy (MSA, n = 7), progressive supranuclear palsy (PSP, n = 17), and Parkinson's disease or dementia with Lewy bodies (PD/DLB, n = 19), then compared SPECT-CT and planar image parameters. RESULTS: We found significant correlations between SPECT-CT SUVmean and planar HMR on early and delayed images (R2 = 0.69 and 0.82, p < 0.0001) and between SPECT-CT and planar WRs (R2 = 0.79, p < 0.0001). A threshold of 31% for SPECT-CT WR based on linear regression resulted in agreement between planar and SPECT-CT WR in 67 (93.1%) of 72 patients. Compared with controls, early and delayed SUVmean in patients with PSP and MSA tended more towards significance than planar HMR. This trend was similar for SPECT-CT WRs in patients with PSP. CONCLUSIONS: Absolute heart counts and SUVmean determined using [123I]MIBG SPECT-CT correlated with findings of conventional planar images in patients with neurological diseases. Three-dimensional quantitation with [123I]MIBG SPECT-CT imaging might differentiate patients with PSP and MSA from controls.

3.
Radiol Phys Technol ; 17(1): 269-279, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336939

RESUMEN

To improve image quality for low-count bone scintigraphy using deep learning and evaluate their clinical applicability. Six hundred patients (training, 500; validation, 50; evaluation, 50) were included in this study. Low-count original images (75%, 50%, 25%, 10%, and 5% counts) were generated from reference images (100% counts) using Poisson resampling. Output (DL-filtered) images were obtained after training with U-Net using reference images as teacher data. Gaussian-filtered images were generated for comparison. Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) to the reference image were calculated to determine image quality. Artificial neural network (ANN) value, bone scan index (BSI), and number of hotspots (Hs) were computed using BONENAVI analysis to assess diagnostic performance. Accuracy of bone metastasis detection and area under the curve (AUC) were calculated. PSNR and SSIM for DL-filtered images were highest in all count percentages. BONENAVI analysis values for DL-filtered images did not differ significantly, regardless of the presence or absence of bone metastases. BONENAVI analysis values for original and Gaussian-filtered images differed significantly at ≦25% counts in patients without bone metastases. In patients with bone metastases, BSI and Hs for original and Gaussian-filtered images differed significantly at ≦10% counts, whereas ANN values did not. The accuracy of bone metastasis detection was highest for DL-filtered images in all count percentages; the AUC did not differ significantly. The deep learning method improved image quality and bone metastasis detection accuracy for low-count bone scintigraphy, suggesting its clinical applicability.


Asunto(s)
Neoplasias Óseas , Aprendizaje Profundo , Humanos , Mejoramiento de la Calidad , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/secundario , Cintigrafía
4.
Phys Eng Sci Med ; 47(1): 135-142, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37902935

RESUMEN

A dual-isotope simultaneous acquisition (DISA) of 99mTc and 18F affects the image quality of 99mTc by crosstalk and spill-over from 18F. We demonstrated the influence of spill-over and crosstalk on image quality and its correction effect for DISA SPECT with 99mTc and 18F. A fillable cylindrical chamber of 30 mm with NEMA-NU4 image quality phantom was filled with 99mTc only or a mixed 99mTc and 18F solution (C100). Two small-region chambers were filled with 99mTc only or a mixed 99mTc and 18F solution made at half the radioactivity concentration of C100 (C50) and non-radioactive water (C0). The 18F/99mTc ratio for DISA was set at approximately 0.4-12. Two types of 99mTc transverse images with and without scatter correction (SC and nonSC) were created. The 99mTc images of single-isotope acquisition (SIA) were created as a reference. The DISA/SIA ratio and contrast of 99mTc were compared between SIA and DISA. Although the DISA/SIA ratios with nonSC of C100, C50 and C0 gradually increased with increasing 18F/99mTc ratio, it was nearly constant by SC. The contrasts of C100 and C50 were similar to a reference value for both nonSC and SC. In conclusion, DISA images showed lower image quality as the 18F/99mTc ratio increased. The image quality in hot-spot regions such as C100 and C50 was improved by SC, whereas cold-spot regions such as C0 could not completely remove the influence of spill-over even with SC.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos , Animales , Fluorodesoxiglucosa F18 , Tomografía Computarizada de Emisión de Fotón Único/métodos , Fantasmas de Imagen
5.
Phys Eng Sci Med ; 47(1): 287-294, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38117462

RESUMEN

Detecting cold as well as hot tumors is vital for interpreting bone tumors on single-photon emission computed tomography (SPECT) images. This study aimed to visually and quantitatively demonstrate the detectability of cold tumors using xSPECT technology compared with that of hot tumors in the phantom study. Five tumors of different sizes and normal bone contained a mixture of 99mTc and K2HPO4 in a spine phantom. We acquired SPECT data using an xSPECT protocol and transverse images were reconstructed using xSPECT Bone (xB) and xSPECT Quant (xQ). Mean standardized uptake values (SUVmean) in volumes of interest (VOI) were calculated. Recovery coefficients (RCs) for each tumor site were calculated with reference to radioactive concentrations. The SUVmeans of the whole vertebral body for hot tumor bone image in cortical bone phantom reconstructed by with xB and xQ were 5.77 and 4.86 respectively. The SUVmean of xB was similar to the true value. The SUVmeans for xB and xQ reconstructed images of cold tumors were both approximately 0.16. The RC of the cold tumor on xQ images increased as the tumor diameter decreased, whereas that of xB remained almost constant regardless of the tumor diameter. In conclusion, the quantitative accuracy of detecting hot and cold tumors was higher in the xB image than in the xQ image. Moreover, the visual detectability of cold tumors was also excellent in xB images.


Asunto(s)
Neoplasias Óseas , Tomografía Computarizada de Emisión de Fotón Único , Humanos , Huesos , Neoplasias Óseas/diagnóstico por imagen , Tecnología , Fantasmas de Imagen
6.
Ann Nucl Cardiol ; 9(1): 85-90, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38058581

RESUMEN

Background: The 123I-metaiodobenzylguanidine heart-to-mediastinum ratios (HMRs) have been standardized between D-SPECT and Anger cameras in a small patient cohort using a phantom-based conversion method. This study aimed to determine the validity of this method and compare the diagnostic performance of the two cameras in a larger patient cohort. Methods: We retrospectively calculated HMRs from early and late anterior-planar equivalent and planar images acquired from 173 patients in 177 studies using D-SPECT and Anger cameras, respectively. The D-SPECT HMRs were cross-calibrated to an Anger camera using conversion coefficients based on previous phantom findings, then standardized to medium-energy general-purpose collimator conditions. Relationships between HMRs before and after corrections were investigated. Late HMRs were classified into four cardiac mortality risk groups and divided into two groups using a threshold of 2.2 to verify diagnostic performance concordance. Results: Correction improved linear regression lines and differences in HMRs among the groups. The overall ratios of perfect concordance were (134 [75.7%] of 177), and higher in groups with very low (49 [80.3%] of 61) and high (51 [86.4%] of 59) HMRs when the standardized HMR was classified according to cardiac mortality risk. That between the systems was the highest (164 [92.7%] of 177) when the HMR was divided by a threshold value of 2.2. Conclusions: Phantom-based conversion can standardize HMRs between D-SPECT and Anger cameras because the standardized HMR provided comparable diagnostic performance. Our findings indicated that this conversion could be applied to multicenter studies that include both D-SPECT and Anger cameras.

7.
Ann Nucl Cardiol ; 9(1): 61-67, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38058582

RESUMEN

Background: A three-dimensional (3D) approach to absolute quantitation of 123I-metaiodobenzylguanidine (MIBG) sympathetic nerve imaging using single-photon emission tomography (SPECT) / computed tomography (CT) is not available. Therefore, we calculated absolute cardiac counts and standardized uptake values (SUVs) from images of 72 consecutive patients with cardiac and neurological diseases using 123I-MIBG SPECT/CT and compared them with conventional planar quantitation. We aimed to develop new methods for 3D heart segmentation and the quantitation of these diseases. Methods: We manually segmented early and late SPECT/CT images of the heart in 3D, then calculated mean (SUVmean) and maximum (SUVmax) SUVs. We analyzed correlations between SUVs and planar heart-to-mediastinum ratios (HMRs), and between washout rates (WRs) derived from the SUVs and planar data. We also categorized WRs as normal or abnormal using linear regression lines determined by the relationship between SPECT/CT and planar WRs, and assessed agreement between them. Results: We calculated SUVmean and SUVmax from all early and late 123I-MIBG SPECT/CT images. Planar HMRs correlated with early and late SUVmean (R2=0.59 and 0.73, respectively) and SUVmax (R2=0.46 and 0.60, respectively; both p<0.0001). The SPECT/CT WRs determined based on SUVmean and SUVmax (R2=0.79 and 0.45, p<0.0001) closely correlated with planar WRs. Agreement of high and low WRs between planar WRs and SPECT/CT WRs calculated using SUVmax and SUVmean reached 88.1% and 94.4% respectively. Conclusions: We found that sympathetic nervous activity could be absolutely quantified in 3D from 123I-MIBG SPECT/CT images. Therefore, we propose a new method for quantifying sympathetic innervation on SPECT/CT images.

8.
J Nucl Cardiol ; 30(6): 2773-2789, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37758961

RESUMEN

BACKGROUND: Absolute quantitative myocardial perfusion SPECT requires addressing of aleatory and epistemic uncertainties in conjunction with providing image quality sufficient for lesion detection and characterization. Iterative reconstruction methods enable the mitigation of the root causes of image degradation. This study aimed to determine the feasibility of a new SPECT/CT method with integrated corrections attempting to enable absolute quantitative cardiac imaging (xSPECT Cardiac; xSC). METHODS: We compared images of prototype xSC and conventional SPECT (Flash3DTM) acquired at rest from 56 patients aged 71 ± 12 y with suspected coronary heart disease. The xSC prototype comprised list-mode acquisitions with continuous rotation and subsequent iterative reconstructions with retrospective electrocardiography (ECG) gating. Besides accurate image formation modeling, patient-specific CT-based attenuation and energy window-based scatter correction, additionally we applied mitigation for patient and organ motion between views (inter-view), and within views (intra-view) for both the gated and ungated reconstruction. We then assessed image quality, semiquantitative regional values, and left ventricular function in the images. RESULTS: The quality of all xSC images was acceptable for clinical purposes. A polar map showed more uniform distribution for xSC compared with Flash3D, while lower apical count and higher defect contrast of myocardial infarction (p = 0.0004) were observed on xSC images. Wall motion, 16-gate volume curve, and ejection fraction were at least acceptable, with indication of improvements. The clinical prospectively gated method rejected beats ≥20% in 6 patients, whereas retrospective gating used an average of 98% beats, excluding 2% of beats. We used the list-mode data to create a product equivalent prospectively gated dataset. The dataset showed that the xSC method generated 18% higher count data and images with less noise, with comparable functional variables of volume and LVEF (p = ns). CONCLUSIONS: Quantitative myocardial perfusion imaging with the list-mode-based prototype xSPECT Cardiac is feasible, resulting in images of at least acceptable image quality.


Asunto(s)
Imagen de Perfusión Miocárdica , Humanos , Estudios Retrospectivos , Corazón/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único , Respiración , Arritmias Cardíacas , Procesamiento de Imagen Asistido por Computador
9.
J Nucl Med Technol ; 51(3): 227-234, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37433675

RESUMEN

The study aim was to evaluate the adaptation of collimators to 123I-N-fluoropropyl-2b-carbomethoxy-3b-(4-iodophenyl)nortropane (123I-FP-CIT) dopamine transporter SPECT (DAT-SPECT) by a high-resolution whole-body SPECT/CT system with a cadmium-zinc-telluride detector (C-SPECT) in terms of image quality, quantitation, diagnostic performance, and acquisition time. Methods: Using a C-SPECT device equipped with a wide-energy, high-resolution collimator and a medium-energy, high-resolution sensitivity (MEHRS) collimator, we evaluated the image quality and quantification of DAT-SPECT for an anthropomorphic striatal phantom. Ordered-subset expectation maximization iterative reconstruction with resolution recovery, scatter, and attenuation correction was used, and the optimal collimator was determined on the basis of the contrast-to-noise ratio (CNR), percentage contrast, and specific binding ratio. The acquisition time that could be reduced using the optimal collimator was determined. The optimal collimator was used to retrospectively evaluate diagnostic accuracy via receiver-operating-characteristic analysis and specific binding ratios for 41 consecutive patients who underwent DAT-SPECT. Results: When the collimators were compared in the phantom verification, the CNR and percentage contrast were significantly higher for the MEHRS collimator than for the wide-energy high-resolution collimator (P < 0.05). There was no significant difference in the CNR between 30 and 15 min of imaging time using the MEHRS collimator. In the clinical study, the areas under the curve for acquisition times of 30 and 15 min were 0.927 and 0.906, respectively, and the diagnostic accuracies of the DAT-SPECT images did not significantly differ between the 2 times. Conclusion: The MEHRS collimator provided the best results for DAT-SPECT with C-SPECT; shorter acquisition times (<15 min) may be possible with injected activity of 167-186 MBq.


Asunto(s)
Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X , Humanos , Estudios Retrospectivos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Fantasmas de Imagen
10.
Ann Nucl Med ; 37(10): 561-571, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37523072

RESUMEN

OBJECTIVES: To investigate whether the center-of-mass shift distance (CMSD) analysis on whole-body dynamic positron emission tomography (WBD-PET) with continuous bed motion is an objective index for discriminating pathological and physiological uptake in the lower abdominal colon. METHODS: We retrospectively analyzed the CMSD in 39 patients who underwent delayed imaging to detect incidental focal uptake that was difficult to determine as pathological and physiological on a conventional early-PET (early) image reconstructed by 5-phase WBD-PET images. The CMSD between each phase of WBD-PET images and between conventional early and delayed (two-phase) PET images were classified into pathological and physiological uptake groups based on endoscopic histology or other imaging diagnostics. The diagnostic performance of CMSD analysis on WBD-PET images was evaluated by receiver operator characteristic (ROC) analysis and compared to that of two-phase PET images. RESULTS: A total of 66 incidental focal uptake detected early image were classified into 19 and 47 pathological and physiological uptake groups, respectively. The CMSD on WBD-PET and two-phase PET images in the pathological uptake group was significantly lower than that in the physiological uptake group (p < 0.01), respectively. The sensitivity, specificity, and accuracy in CMSD analysis on WBD-PET images at the optimal cutoff of 5.2 mm estimated by the Youden index were 94.7%, 89.4%, and 89.4%, respectively, which were not significantly different (p = 0.74) from those of two-phase PET images. CONCLUSIONS: The CMSD analysis on WBD-PET was useful in discriminating pathological and physiological colorectal uptake in the lower abdominal region, and its diagnostic performance was comparable to that of two-phase PET images. We suggested that CMSD analysis on WBD-PET images would be a novel objective method to omit unnecessary additional delayed imaging.


Asunto(s)
Neoplasias Colorrectales , Fluorodesoxiglucosa F18 , Humanos , Radiofármacos , Estudios Retrospectivos , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos
11.
Phys Eng Sci Med ; 46(2): 839-849, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37126151

RESUMEN

Single-photon emission computed tomography with X-ray computed tomography (SPECT/CT) systems have diversified due to the remarkable developments made by each manufacturer. This study aimed to optimize the reconstruction parameters of six state-of-the-art SPECT/CT systems and compare their image quality of bone SPECT. SPECT images were acquired on SPECT/CT systems, including Symbia Intevo, Discovery NM/CT 670, Discovery NM/CT 870 CZT, Brightview XCT, and VERITON-CT. SIM2 bone phantom with tough lung phantoms on both sides of the spinal inserts that simulate the thorax was used for image quality assessment. SPECT images were obtained at individual workstations using an ordered subset expectation maximization method with three-dimensional resolution recovery, as well as CT attenuation and scatter correction, subset 2, iteration 12-84, and a full width at half maximum 10-mm Gaussian smooth filter. An automatic image analysis software dedicated to SIM2 bone phantom was used to assess the contrast-to-noise ratio (CNR), relative recovery coefficient, percentage of coefficient of variance, contrast, and detectability. The optimal parameters for each system were defined with superior detectability of spherical lesions and noise characteristics, as well as the highest CNR. All systems exhibited better image quality indexes using the optimal parameters than using the manufacturer's recommended parameters. The detectability of all systems was in agreement while using the optimal parameters. Detectability agreement can be achieved by optimizing the reconstruction parameters for different reconstruction algorithms, which can further improve the image quality. Therefore, future research should focus on optimal reconstruction parameters for SPECT alone.


Asunto(s)
Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada de Emisión de Fotón Único/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos , Algoritmos
13.
Radiol Phys Technol ; 16(2): 244-253, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36959492

RESUMEN

We developed a phantom for single-photon emission computed tomography (SPECT), with the objective of assessing image quality to optimize administered dose and acquisition time. We investigated whether the concept of counts-per-volume (CPV), which is used as a predictor of visual image quality in positron emission tomography, can be used to estimate the acquisition time required for each SPECT image. QIRE phantoms for the head (QIRE-h) and torso (QIRE-t) were developed to measure four physical indicators of image quality in a single scan: uniformity, contrast of both hot and defective lesions with respect to the background, and linearity between radioactivity concentration and count density. The target organ's CPV (TCPV), sharpness index (SI), and contrast-to-noise ratio (CNR) were measured for QIRE-h and QIRE-t phantoms, and for anthropomorphic brain and torso phantoms. The SPECT image quality of the four phantoms was visually assessed on a 5-point scale. The acquisition time and TCPV were correlated for all four phantoms. The SI and CNR values were nearly identical for the QIRE and anthropomorphic phantoms with comparable TCPV. The agreement between the visual scores of QIRE-h and brain phantoms, as well as QIRE-t and torso phantoms, was moderate and substantial, respectively. Comparison of SPECT image quality between QIRE and anthropomorphic phantoms revealed close agreement in terms of physical indicators and visual assessments. Therefore, the TCPV concept can also be applied to SPECT images of QIRE phantoms, and optimization of imaging parameters for nuclear medicine examinations may be possible using QIRE phantoms alone.


Asunto(s)
Medicina Nuclear , Tomografía Computarizada de Emisión de Fotón Único , Estudios de Factibilidad , Tomografía Computarizada de Emisión de Fotón Único/métodos , Cintigrafía , Cabeza , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
14.
J Nucl Med Technol ; 51(1): 49-56, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36750381

RESUMEN

N-isopropyl-p-123I-iodoamphetamine brain perfusion SPECT has been used with various attenuation coefficients (µ-values); however, optimization is required. This study aimed to determine the optimal µ-value (µopt-value) for Chang attenuation correction (AC) using clinical data by comparing the Chang method and CT-based AC. Methods: We used 100 patients (reference group, 60; disease group, 40) who underwent N-isopropyl-p-123I-iodoamphetamine SPECT. SPECT images of the reference group were obtained to calculate the AC using the Chang method (µ-values, 0.07-0.20; 0.005 interval) and the CT-based method, both without scatter correction (SC) and with SC. The µopt-value with the smallest mean percentage error for the brain regions of the reference group was calculated. Agreement between the Chang and CT-based methods applying the µopt-value was evaluated using Bland-Altman analysis. Additionally, the percentage error in the region of hypoperfusion in the diseased group was compared with the percentage error in the same region in the reference group when the µopt-value was applied. Results: The µopt-values were 0.140 for Chang without SC and 0.160 for Chang with SC. In the Chang method, with the µopt-value applied, fixed and proportional biases were observed in the Bland-Altman analysis (both P < 0.05), and there was a tendency for the percentage error to be underestimated in the limbic regions and overestimated in the central brain regions. There was no significant difference between the disease group and the reference group in the region of hypoperfusion in either Chang without SC or Chang with SC. Conclusion: The present study revealed that the µopt-values of the Chang method are 0.140 without SC and 0.160 with SC.


Asunto(s)
Encéfalo , Tomografía Computarizada de Emisión de Fotón Único , Humanos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Radioisótopos de Yodo , Perfusión , Procesamiento de Imagen Asistido por Computador/métodos
16.
Ann Nucl Cardiol ; 8(1): 51-56, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36540186

RESUMEN

Background: Gated myocardial perfusion single-photon emission computed tomography (SPECT) has been used to non-invasively evaluate the left ventricular (LV) volume and function. This study aimed to measure the normal and range values for heart risk view-function (HRV-F) software using the Japanese Society of Nuclear Medicine Working Group (JSNM-WG) normal database and clarify the characteristics of the normal database. Methods:We used 206 myocardial perfusion short-axis images from the normal database. Ejection fraction (EF), end-systolic volume (ESV), end-diastolic volume (EDV), peak filling rate (PFR), 1/3 mean filling rate (MFR), time to PFR (TTPF), and TTPF divided by RR interval (TPFR/RR) were calculated. Phase parameters of 95% histogram bandwidth and standard deviation were also computed using the phase analysis. The relationships among phase parameters, LV volumes, and body surface area (BSA) were evaluated in the age group of ≤65 years. Results: Higher EF was observed in females than in males (p<0.0001). EDV and ESV were significantly higher in males than in females (p<0.0001). Additionally, PFR and 1/3 MFR significantly differed between sexes (p≤0.075). Phase parameters were higher in males than in females, and higher at stress than at rest. All diastolic parameters showed no significant differences between sexes in any age group, whereas differences have remained in phase values. Phase parameters were weakly correlated with EDV (r=0.31), ESV (r=0.43), and BSA (r=0.27), respectively. Conclusions: Mean normal and range values of the normal database were determined using the HRV-F software. The normal and range values can help diagnose gated SPECT data in patients with cardiac diseases.

17.
Ann Nucl Med ; 36(12): 1031-1038, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36227465

RESUMEN

BACKGROUND: Myocardial phantom studies are widely used as a tool to accurately assess the physical phenomenon of dual-isotope simultaneous acquisition (DISA) in the small-animal fields. However, the previous phantom did not reproduce the structures of rats or mice. The aim of this study was to develop a novel myocardial phantom simulating the structure of a small animal that can be evaluated using the image quality of DISA. METHODS: A novel small-animal myocardial phantom that simulated a rat was constructed by the myocardium, liver, lung, spine, and torso. Normal and inferior wall defect myocardial phantoms were filled with 99mTc or 18F solution to simulate single-isotope acquisition (SIA) and DISA. Phantom and small-animal images with no scatter correction (nonSC) and scatter correction (SC) were created. RESULTS: The 99mTc DISA with SC showed a low %CV compared to that with nonSC. Although the 99mTc DISA with nonSC had lower cavity contrast than that of 99mTc SIA with nonSC, the cavity contrast of SC had similar values between SIA and DISA. The minimum %uptake of 99mTc SIA with nonSC was a lower value compared to that of 99mTc DISA with nonSC. The 99mTc DISA was equivalent to the minimum %uptake of 99mTc SIA by SC. CONCLUSION: We have developed a novel myocardial phantom for the rat model to evaluate the image quality for reproducing the physical phenomenon associated with radiation attenuation and scattering. Furthermore, we could demonstrate the usefulness of the novel small-animal myocardial phantom by image quality evaluation of DISA with 99mTc and 18F compared to SIA.


Asunto(s)
Fluorodesoxiglucosa F18 , Tomografía Computarizada de Emisión de Fotón Único , Animales , Ratas , Ratones , Tomografía Computarizada de Emisión de Fotón Único/métodos , Fantasmas de Imagen , Miocardio , Isótopos , Radiofármacos , Corazón/diagnóstico por imagen
18.
Ann Nucl Med ; 36(11): 941-950, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36048347

RESUMEN

OBJECTIVE: Assessing the extent of bone metastases in patients with prostate cancer is very important to predict patient prognosis. Therefore, the bone scan index (BSI), which is easy to use, has been used; however, the accuracy is not that high. In this study, we proposed a new index for the extent of bone disease using single-photon emission computed tomography with computed tomography (SPECT/CT) images and assessed the accuracy of calculation. METHODS: In this study, a total of 46 bone scans from 12 patients with prostate cancer treated for bone metastases with Radium-223 were included. Whole-body planar images were obtained 150-180 min after an intravenous injection of 99mTc-methylene diphosphonate, and cervical-to-pelvic SPECT/CT was immediately obtained. The total bone volume (TBV) and regional metabolic bone volume (MBV) were defined as Hounsfield unit of > 120, standardized uptake value (SUV) of > 0.5, and SUV of > 5-8 in four levels, respectively. Bone metabolism volumetric index (BMVI) was calculated as the percentage of the total MBV divided by TBV. The variability of the TBV measurement was evaluated by the percentage coefficient of variance (%CV) of TBV within individual patients. We evaluated the correlation of TBV with age, height, weight, and body mass index and the correlation and agreement between BSI and BMVI. RESULTS: The mean and %CV of TBV were 4661.7 cm3 and 2.8%, respectively, and TBV was strongly correlated with body weight. BMVI was significantly higher than BSI and correlated with alkaline phosphatase. For patients with progressive bone metastases, BSI was clearly underestimated, whereas BMVI was elevated. CONCLUSIONS: Although assessed in a small number of cases, the new index for assessing the extent of bone disease using SPECT/CT imaging was highly value than BSI and was significantly correlated with alkaline phosphatase. Therefore, this study suggests that BMVI could improve the low sensitivity of BSI in patients with low extent of disease grade.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Próstata , Masculino , Humanos , Fosfatasa Alcalina , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/secundario , Huesos/diagnóstico por imagen
19.
J Nucl Med Technol ; 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35772965

RESUMEN

The counts per pixel of brain perfusion single photon emission computed tomography (SPECT) images depend on the administration dose, acquisition time or patient condition, and they sometimes become poor acquisition counts in daily clinical study. The aim of this study was to evaluate the effect of different acquisition counts on qualitative images and statistical imaging analysis and to determine the minimum acquisition counts necessary for accurate examinations. Methods: We performed a brain phantom experiment simulating normal accumulation of 99mTc -ethyl-cysteinate dimer (99mTc-ECD) as a brain uptake of 5.5 %. The SPECT data were acquired in a continuous repetitive rotation. Ten types of SPECT images with different acquisition counts were created by varying the addition of the number of rotations. We used the normalized mean squared error (NMSE) and visual analysis. For the clinical study, we used 25 patients acquired in a continuous repetitive rotation, and created six brain images with different acquisition counts by varying the number of rotations added from 1 to 6. The contrast-to-noise ratio (CNR) was calculated from the mean counts with ROIs in gray and white matter. In addition, the severity, extent and ratio of disease-specific regions were evaluated as indices of statistical imaging analysis. Results: For the phantom study, the curve of NMSE showed a tendency of convergence from approximately 23.6 counts/pixel. Furthermore, the visual score showed that images with 23.6 counts/pixel or more were barely diagnosable. For the clinical study, the CNR was significantly decreased at 11.5 counts/pixel or less. Severity and extent tended to increase with decreasing acquisition counts, and a significant increase was shown at 5.9 counts/pixel. On the other hand, there was no significant difference in ratio values among defferent acquisition counts. Conclusion: Based on comprehensive assessment of phantom and clinical studies, we suggested that 23.6 counts/pixel or more were necessary to keep image quality of qualitative images and to accurately calculate indices of statistical imaging analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...