Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Radiol ; 33(9): 6582-6591, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37042979

RESUMEN

OBJECTIVES: While fully supervised learning can yield high-performing segmentation models, the effort required to manually segment large training sets limits practical utility. We investigate whether data mined line annotations can facilitate brain MRI tumor segmentation model development without requiring manually segmented training data. METHODS: In this retrospective study, a tumor detection model trained using clinical line annotations mined from PACS was leveraged with unsupervised segmentation to generate pseudo-masks of enhancing tumors on T1-weighted post-contrast images (9911 image slices; 3449 adult patients). Baseline segmentation models were trained and employed within a semi-supervised learning (SSL) framework to refine the pseudo-masks. Following each self-refinement cycle, a new model was trained and tested on a held-out set of 319 manually segmented image slices (93 adult patients), with the SSL cycles continuing until Dice score coefficient (DSC) peaked. DSCs were compared using bootstrap resampling. Utilizing the best-performing models, two inference methods were compared: (1) conventional full-image segmentation, and (2) a hybrid method augmenting full-image segmentation with detection plus image patch segmentation. RESULTS: Baseline segmentation models achieved DSC of 0.768 (U-Net), 0.831 (Mask R-CNN), and 0.838 (HRNet), improving with self-refinement to 0.798, 0.871, and 0.873 (each p < 0.001), respectively. Hybrid inference outperformed full image segmentation alone: DSC 0.884 (Mask R-CNN) vs. 0.873 (HRNet), p < 0.001. CONCLUSIONS: Line annotations mined from PACS can be harnessed within an automated pipeline to produce accurate brain MRI tumor segmentation models without manually segmented training data, providing a mechanism to rapidly establish tumor segmentation capabilities across radiology modalities. KEY POINTS: • A brain MRI tumor detection model trained using clinical line measurement annotations mined from PACS was leveraged to automatically generate tumor segmentation pseudo-masks. • An iterative self-refinement process automatically improved pseudo-mask quality, with the best-performing segmentation pipeline achieving a Dice score of 0.884 on a held-out test set. • Tumor line measurement annotations generated in routine clinical radiology practice can be harnessed to develop high-performing segmentation models without manually segmented training data, providing a mechanism to rapidly establish tumor segmentation capabilities across radiology modalities.


Asunto(s)
Neoplasias Encefálicas , Procesamiento de Imagen Asistido por Computador , Adulto , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen
2.
Radiol Artif Intell ; 3(6): e210013, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34870216

RESUMEN

Integration of artificial intelligence (AI) applications within clinical workflows is an important step for leveraging developed AI algorithms. In this report, generalizable components for deploying AI systems into clinical practice are described that were implemented in a clinical pilot study using lymphoscintigraphy examinations as a prospective use case (July 1, 2019-October 31, 2020). Deployment of the AI algorithm consisted of seven software components, as follows: (a) image delivery, (b) quality control, (c) a results database, (d) results processing, (e) results presentation and delivery, (f) error correction, and (g) a dashboard for performance monitoring. A total of 14 users used the system (faculty radiologists and trainees) to assess the degree of satisfaction with the components and overall workflow. Analyses included the assessment of the number of examinations processed, error rates, and corrections. The AI system processed 1748 lymphoscintigraphy examinations. The system enabled radiologists to correct 146 AI results, generating real-time corrections to the radiology report. All AI results and corrections were successfully stored in a database for downstream use by the various integration components. A dashboard allowed monitoring of the AI system performance in real time. All 14 survey respondents "somewhat agreed" or "strongly agreed" that the AI system was well integrated into the clinical workflow. In all, a framework of processes and components for integrating AI algorithms into clinical workflows was developed. The implementation described could be helpful for assessing and monitoring AI performance in clinical practice. Keywords: PACS, Computer Applications-General (Informatics), Diagnosis © RSNA, 2021.

3.
Radiographics ; 41(5): 1420-1426, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34388050

RESUMEN

Natural language processing (NLP) is a methodology designed to extract concepts and meaning from human-generated unstructured (free-form) text. It is intended to be implemented by using computer algorithms so that it can be run on a corpus of documents quickly and reliably. To enable machine learning (ML) techniques in NLP, free-form text must be converted to a numerical representation. After several stages of preprocessing including tokenization, removal of stop words, token normalization, and creation of a master dictionary, the bag-of-words (BOW) technique can be used to represent each remaining word as a feature of the document. The preprocessing steps simplify the documents but also potentially degrade meaning. The values of the features in BOW can be modified by using techniques such as term count, term frequency, and term frequency-inverse document frequency. Experience and experimentation will guide decisions on which specific techniques will optimize ML performance. These and other NLP techniques are being applied in radiology. Radiologists' understanding of the strengths and limitations of these techniques will help in communication with data scientists and in implementation for specific tasks. Online supplemental material is available for this article. ©RSNA, 2021.


Asunto(s)
Procesamiento de Lenguaje Natural , Radiología , Algoritmos , Humanos , Aprendizaje Automático , Radiólogos
4.
Artículo en Inglés | MEDLINE | ID: mdl-31911737

RESUMEN

Categorization of radiological images according to characteristics such as modality, scanner parameters, body part etc, is important for quality control, clinical efficiency and research. The metadata associated with images stored in the DICOM format reliably captures scanner settings such as tube current in CT or echo time (TE) in MRI. Other parameters such as image orientation, body part examined and presence of intravenous contrast, however, are not inherent to the scanner settings, and therefore require user input which is prone to human error. There is a general need for automated approaches that will appropriately categorize images, even with parameters that are not inherent to the scanner settings. These approaches should be able to process both planar 2D images and full 3D scans. In this work, we present a deep learning based approach for automatically detecting one such parameter: the presence or absence of intravenous contrast in 3D MRI scans. Contrast is manually injected by radiology staff during the imaging examination, and its presence cannot be automatically recorded in the DICOM header by the scanner. Our classifier is a convolutional neural network (CNN) based on the ResNet architecture. Our data consisted of 1000 breast MRI scans (500 scans with and 500 scans without intravenous contrast), used for training and testing a CNN on 80%/20% split, respectively. The labels for the scans were obtained from the series descriptions created by certified radiological technologists. Preliminary results of our classifier are very promising with an area under the ROC curve (AUC) of 0.98, sensitivity and specificity of 1.0 and 0.9 respectively (at the optimal ROC cut-off point), demonstrating potential usefulness in both clinical as well as research settings.

5.
AJR Am J Roentgenol ; 211(3): W178-W184, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29975114

RESUMEN

OBJECTIVE: Long indwelling times for inferior vena cava (IVC) filters that are used to prevent venous thromboembolism can result in complications. To improve care for patients receiving retrievable IVC filters, we developed and evaluated an informatics-based initiative to facilitate patient tracking, clinical decision-making, and care coordination. MATERIALS AND METHODS: A semiautomated filter-tracking application was custom-built to query our radiology information system to extract and transfer key data elements related to IVC filter insertion procedures into a database. A web-based interface displayed key information and facilitated communication between the interventional radiology clinical team and referring physicians. A set of filter management options was provided depending on each patient's clinical condition. The system was launched in April 2016. Using retrospective observational cohort methods, we compared filter retrieval rates during a test period from July through December 2016 with a control period of the same 6 months in 2015. RESULTS: System development required approximately 100 hours of development time. Two hundred ninety-three IVC filter placements and 83 filter retrievals were tracked during the study periods. The overall filter retrieval rate was 23% in the control period and 34% in the test period. Mean times from filter placement to retrieval in the control and test periods were not significantly different (88.9 and 102.7 days, respectively; p = 0.32). CONCLUSION: A semiautomated approach to tracking patients with IVC filters can facilitate care coordination and clinical decision-making for a device with known potential complications. Similar applications designed to improve provider communication and documentation of filter management plans, including appropriateness for retrieval, can be replicated.


Asunto(s)
Remoción de Dispositivos , Selección de Paciente , Sistemas de Información Radiológica , Filtros de Vena Cava/efectos adversos , Vena Cava Inferior , Tromboembolia Venosa/diagnóstico por imagen , Bases de Datos Factuales , Humanos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Tromboembolia Venosa/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...