Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Clin Invest ; 133(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37183820

RESUMEN

Despite the prevalence of pericytes in the microvasculature of the heart, their role during ischemia-induced remodeling remains unclear. We used multiple lineage-tracing mouse models and found that pericytes migrated to the injury site and expressed profibrotic genes, coinciding with increased vessel leakage after myocardial infarction (MI). Single-cell RNA-Seq of cardiac pericytes at various time points after MI revealed the temporally regulated induction of genes related to vascular permeability, extracellular matrix production, basement membrane degradation, and TGF-ß signaling. Deleting TGF-ß receptor 1 in chondroitin sulfate proteoglycan 4-expressing (Cspg4-expressing) cells reduced fibrosis following MI, leading to a transient improvement in the cardiac ejection fraction. Furthermore, genetic ablation of Cspg4-expressing cells resulted in excessive vascular permeability, a decline in cardiac function, and increased mortality in the second week after MI. These data reveal an essential role for cardiac pericytes in the control of vascular homeostasis and the fibrotic response after acute ischemic injury, information that will help guide the development of novel strategies to preserve vascular integrity and attenuate pathological cardiac remodeling.


Asunto(s)
Infarto del Miocardio , Pericitos , Ratones , Animales , Pericitos/metabolismo , Infarto del Miocardio/metabolismo , Corazón , Fibrosis , Matriz Extracelular/metabolismo , Remodelación Ventricular/genética , Miocardio/metabolismo
3.
Sci Rep ; 6: 26269, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27197045

RESUMEN

Nanomedicine is a burgeoning industry but an understanding of the interaction of nanomaterials with the immune system is critical for clinical translation. Macrophages play a fundamental role in the immune system by engulfing foreign particulates such as nanoparticles. When activated, macrophages form distinct phenotypic populations with unique immune functions, however the mechanism by which these polarized macrophages react to nanoparticles is unclear. Furthermore, strategies to selectively evade activated macrophage subpopulations are lacking. Here we demonstrate that stimulated macrophages possess higher phagocytic activities and that classically activated (M1) macrophages exhibit greater phagocytic capacity than alternatively activated (M2) macrophages. We show that modification of nanoparticles with polyethylene-glycol results in decreased clearance by all macrophage phenotypes, but importantly, coating nanoparticles with CD47 preferentially lowers phagocytic activity by the M1 phenotype. These results suggest that bio-inspired nanoparticle surface design may enable evasion of specific components of the immune system and provide a rational approach for developing immune tolerant nanomedicines.


Asunto(s)
Macrófagos/fisiología , Nanopartículas/química , Animales , Antígeno CD47/química , Activación de Macrófagos , Macrófagos/inmunología , Ratones Endogámicos C57BL , Fagocitosis , Fenotipo , Polietilenglicoles/química , Poliestirenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...