Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 381(6661): 1006-1010, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37561884

RESUMEN

Organisms have evolved under gravitational force, and many sense the direction of gravity by means of statoliths in specialized cells. In flowering plants, starch-accumulating plastids, known as amyloplasts, act as statoliths to facilitate downstream gravitropism. The gravity-sensing mechanism has long been considered a mechanosensing process by which amyloplasts transmit forces to intracellular structures, but the molecular mechanism underlying this has not been elucidated. We show here that LAZY1-LIKE (LZY) family proteins involved in statocyte gravity signaling associate with amyloplasts and the proximal plasma membrane. This results in polar localization according to the direction of gravity. We propose a gravity-sensing mechanism by which LZY translocation to the plasma membrane signals the direction of gravity by transmitting information on the position of amyloplasts.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Membrana Celular , Polaridad Celular , Gravitropismo , Sensación de Gravedad , Plastidios , Humanos , Membrana Celular/metabolismo , Gravitación , Plastidios/fisiología , Transporte de Proteínas , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología
2.
Curr Opin Plant Biol ; 68: 102256, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35780691

RESUMEN

To understand cell biological processes, like signalling pathways, protein movements, or metabolic processes, precise tools for manipulation are desired. Optogenetics allows to control cellular processes by light and can be applied at a high temporal and spatial resolution. In the last three decades, various optogenetic applications have been developed for animal, fungal, and prokaryotic cells. However, using optogenetics in plants has been difficult due to biological and technical issues, like missing cofactors, the presence of endogenous photoreceptors, or the necessity of light for photosynthesis, which potentially activates optogenetic tools constitutively. Recently developed tools overcome these limitations, making the application of optogenetics feasible also in plants. Here, we highlight the most useful recent applications in plants and give a perspective for future optogenetic approaches in plants science.


Asunto(s)
Optogenética , Plantas , Animales , Plantas/genética , Transducción de Señal
3.
Nature ; 579(7799): 409-414, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32188942

RESUMEN

Plants are essential for life and are extremely diverse organisms with unique molecular capabilities1. Here we present a quantitative atlas of the transcriptomes, proteomes and phosphoproteomes of 30 tissues of the model plant Arabidopsis thaliana. Our analysis provides initial answers to how many genes exist as proteins (more than 18,000), where they are expressed, in which approximate quantities (a dynamic range of more than six orders of magnitude) and to what extent they are phosphorylated (over 43,000 sites). We present examples of how the data may be used, such as to discover proteins that are translated from short open-reading frames, to uncover sequence motifs that are involved in the regulation of protein production, and to identify tissue-specific protein complexes or phosphorylation-mediated signalling events. Interactive access to this resource for the plant community is provided by the ProteomicsDB and ATHENA databases, which include powerful bioinformatics tools to explore and characterize Arabidopsis proteins, their modifications and interactions.


Asunto(s)
Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/química , Arabidopsis/química , Espectrometría de Masas , Proteoma/análisis , Proteoma/química , Proteómica , Secuencias de Aminoácidos , Arabidopsis/anatomía & histología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Bases de Datos de Proteínas , Conjuntos de Datos como Asunto , Regulación de la Expresión Génica de las Plantas , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Especificidad de Órganos , Fosfoproteínas/análisis , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilación , Proteoma/biosíntesis , Proteoma/genética , ARN Mensajero/análisis , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Transcriptoma
4.
Front Plant Sci ; 11: 609600, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519861

RESUMEN

Exocyst is a heterooctameric protein complex crucial for the tethering of secretory vesicles to the plasma membrane during exocytosis. Compared to other eukaryotes, exocyst subunit EXO70 is represented by many isoforms in land plants whose cell biological and biological roles, as well as modes of regulation remain largely unknown. Here, we present data on the phospho-regulation of exocyst isoform EXO70C2, which we previously identified as a putative negative regulator of exocyst function in pollen tube growth. A comprehensive phosphoproteomic analysis revealed phosphorylation of EXO70C2 at multiple sites. We have now performed localization and functional studies of phospho-dead and phospho-mimetic variants of Arabidopsis EXO70C2 in transiently transformed tobacco pollen tubes and stably transformed Arabidopsis wild type and exo70C2 mutant plants. Our data reveal a dose-dependent effect of AtEXO70C2 overexpression on pollen tube growth rate and cellular architecture. We show that changes of the AtEXO70C2 phosphorylation status lead to distinct outcomes in wild type and exo70c2 mutant cells, suggesting a complex regulatory pattern. On the other side, phosphorylation does not affect the cytoplasmic localization of AtEXO70C2 or its interaction with putative secretion inhibitor ROH1 in the yeast two-hybrid system.

5.
Development ; 143(24): 4687-4700, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27836964

RESUMEN

Polar transport of the phytohormone auxin through PIN-FORMED (PIN) auxin efflux carriers is essential for the spatiotemporal control of plant development. The Arabidopsis thaliana serine/threonine kinase D6 PROTEIN KINASE (D6PK) is polarly localized at the plasma membrane of many cells where it colocalizes with PINs and activates PIN-mediated auxin efflux. Here, we show that the association of D6PK with the basal plasma membrane and PINs is dependent on the phospholipid composition of the plasma membrane as well as on the phosphatidylinositol phosphate 5-kinases PIP5K1 and PIP5K2 in epidermis cells of the primary root. We further show that D6PK directly binds polyacidic phospholipids through a polybasic lysine-rich motif in the middle domain of the kinase. The lysine-rich motif is required for proper PIN3 phosphorylation and for auxin transport-dependent tropic growth. Polybasic motifs are also present at a conserved position in other D6PK-related kinases and required for membrane and phospholipid binding. Thus, phospholipid-dependent recruitment to membranes through polybasic motifs might not only be required for D6PK-mediated auxin transport but also other processes regulated by these, as yet, functionally uncharacterized kinases.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositoles/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Quinasas/metabolismo , Secuencias de Aminoácidos , Arabidopsis/genética , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente
6.
Proc Natl Acad Sci U S A ; 111(52): 18781-6, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25512548

RESUMEN

Plants monitor the ambient light conditions using several informational photoreceptors, including red/far-red light absorbing phytochrome. Phytochrome is widely believed to regulate the transcription of light-responsive genes by modulating the activity of several transcription factors. Here we provide evidence that phytochrome significantly changes alternative splicing (AS) profiles at the genomic level in Arabidopsis, to approximately the same degree as it affects steady-state transcript levels. mRNA sequencing analysis revealed that 1,505 and 1,678 genes underwent changes in their AS and steady-state transcript level profiles, respectively, within 1 h of red light exposure in a phytochrome-dependent manner. Furthermore, we show that splicing factor genes were the main early targets of AS control by phytochrome, whereas transcription factor genes were the primary direct targets of phytochrome-mediated transcriptional regulation. We experimentally validated phytochrome-induced changes in the AS of genes that are involved in RNA splicing, phytochrome signaling, the circadian clock, and photosynthesis. Moreover, we show that phytochrome-induced AS changes of SPA1-RELATED 3, the negative regulator of light signaling, physiologically contributed to promoting photomorphogenesis. Finally, photophysiological experiments demonstrated that phytochrome transduces the signal from its photosensory domain to induce light-dependent AS alterations in the nucleus. Taking these data together, we show that phytochrome directly induces AS cascades in parallel with transcriptional cascades to mediate light responses in Arabidopsis.


Asunto(s)
Empalme Alternativo/fisiología , Arabidopsis/metabolismo , Fitocromo/metabolismo , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Transducción de Señal/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ARN Mensajero/genética , ARN de Planta/genética , Transcripción Genética/fisiología
7.
Plant Signal Behav ; 7(8): 933-6, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22751357

RESUMEN

Phytochrome B (phyB), a major photoreceptor in plants, interacts with transcription factors to regulate gene expression and induce various light responses. Recently, we identified an SR-like splicing factor, RRC1 (reduced red-light responses in cry1cry2 background 1), as a novel component of phyB signaling in Arabidopsis. RRC1 has a C-terminal arginine/serine-rich (RS) domain that is generally important for the regulation of alternative splicing. Whereas rrc1 hypomorphic mutant alleles produce truncated RRC1 proteins that lack the C-terminal region, including the RS domain, and exhibit splicing defects and reduced phyB signaling, the rrc1-4 null allele additionally displays pleiotropic developmental abnormalities with more severe splicing defects. Here, we show that transgenic Arabidopsis plants that express truncated RRC1 lacking the RS domain in the rrc1-4 null allele background exhibited the same phenotype as the hypomorphic alleles. Hence, we conclude that deletion of the RS domain of RRC1 reduces phyB signaling, probably due to aberrant regulation of alternative splicing of target genes.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fitocromo B/metabolismo , Eliminación de Secuencia , Transducción de Señal , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Pleiotropía Genética/efectos de la radiación , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Hipocótilo/efectos de la radiación , Luz , Mutación/genética , Estructura Terciaria de Proteína , Transducción de Señal/efectos de la radiación , Relación Estructura-Actividad
8.
Plant J ; 70(5): 727-38, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22324426

RESUMEN

Plants monitor the light environment through informational photoreceptors that include phytochromes. In seedling de-etiolation, phytochrome B (phyB), which is the most important member of the phytochrome family, interacts with transcription factors to regulate gene expression and transduce light signals. In this study, we identified rrc1 (reduced red-light responses in cry1cry2 background 1), an Arabidopsis mutant that is impaired in phyB-mediated light responses. A genetic analysis demonstrated that RRC1 affected light signaling in a phyB-dependent manner. RRC1 encodes an ortholog of the human potential splicing factor SR140. The RRC1 polypeptide contains a C-terminal arginine/serine-rich (RS) domain that is important for the regulation of alternative splicing. Although the complete loss of RRC1 caused pleiotropic developmental abnormalities, the deletion of the RS domain specifically reduced phyB signaling and caused aberrant alternative splicing of several SR protein genes. Moreover, semi-quantitative RT-PCR analysis revealed that the alternative splicing patterns of some of the SR protein genes were altered in a red-light-dependent manner, and that these responses were reduced in both phyB and rrc1 mutants. These findings suggest that the regulation of alternative splicing by the RS domain of RRC1 plays an important role in phyB signal transduction.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fitocromo B/metabolismo , Transducción de Señal , Transporte Activo de Núcleo Celular , Empalme Alternativo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Clonación Molecular , Color , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Pleiotropía Genética , Luz , Fitocromo B/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/efectos de la radiación , Plásmidos/genética , Plásmidos/metabolismo , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Eliminación de Secuencia , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA