Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small Methods ; 6(7): e2200248, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35507776

RESUMEN

Three-dimensional (3D) hierarchical structures have been explored for various applications owing to the synergistic effects of micro- and nanostructures. However, the development of spherical micro/nano hierarchical structures (S-HSs), which can be used as energy/water harvesting systems and sensing devices, remains challenging owing to the trade-off between structural complexity and fabrication difficulty. This paper presents a new strategy for facile, scalable S-HS fabrication using a thermal expansion of microspheres and nanopatterned structures. When a specific temperature is applied to a composite film of microspheres and elastomers with nanopatterned surfaces, microspheres are expanded and 3D spherical microstructures are generated. Various nanopatterns and densities of spherical microstructures can thereby be quantitatively controlled. The fabricated S-HSs have been used in renewable electrical energy harvesting and sustainable water management applications. Compared to a triboelectric nanogenerator (TENG) with bare film, the S-HS-based TENG exhibited 4.48 times higher triboelectric performance with high mechanical durability. Furthermore, an S-HS is used as a water harvesting device to capture water in a fog environment. The water collection rate is dramatically enhanced by the increased surface area and locally concentrated vapor diffusion flux due to the spherical microstructures.

2.
Biofouling ; 36(7): 766-782, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32842788

RESUMEN

Here, by creating different types of artificial barrier layer against bacterial attachment, anti-biofouling properties were endowed on three metallic surfaces - aluminum, stainless steel and titanium. To each metallic surface, a tailored chemical oxidation process was applied to grow scalable oxide structures with an additional appropriate coating, resulting in three different types of anti-biofouling barrier, a thin water film, an air layer and an oil layer. Fluorescence images of the attached bacteria showed that the water layer improved the anti-biofouling performance up to 8-12 h and the air layer up to 12-24 h, comparable with the lifetime of the air layer. In comparison, the oil layer exhibited the best anti-biofouling performance by suppressing the fouled area by < 10% up to 72 h regardless of the substratum type. The present work provides simple, low-cost, scalable strategies to enhance the anti-biofouling performance of industrially important metallic surfaces. [Formula: see text].


Asunto(s)
Incrustaciones Biológicas , Nanoestructuras , Incrustaciones Biológicas/prevención & control , Metales , Óxidos/farmacología , Acero Inoxidable , Propiedades de Superficie
3.
Sci Rep ; 10(1): 2959, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32076000

RESUMEN

Recently, lubricant-impregnated surfaces (LIS) have emerged as a promising condenser surface by facilitating the removal of condensates from the surface. However, LIS has the critical limitation in that lubricant oil is depleted along with the removal of condensates. Such oil depletion is significantly aggravated under high condensation heat transfer. Here we propose a brushed LIS (BLIS) that can allow the application of LIS under high condensation heat transfer indefinitely by overcoming the previous oil depletion limit. In BLIS, a brush replenishes the depleted oil via physical contact with the rotational tube, while oil is continuously supplied to the brush by capillarity. In addition, BLIS helps enhance heat transfer performance with additional route to droplet removal by brush sweeping. By applying BLIS, we maintain the stable dropwise condensation mode for > 48 hours under high supersaturation levels along with up to 61% heat transfer enhancement compared to hydrophobic surfaces.

4.
ACS Appl Mater Interfaces ; 12(3): 4068-4080, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31891474

RESUMEN

Superhydrophobic (SHPo) surfaces can provide high condensation heat transfer due to facilitated droplet removal. However, such high performance has been limited to low supersaturation conditions due to surface flooding. Here, we quantify flooding resistance defined as the rate of increase in the fraction of water-filled cavities with respect to the supersaturation level. Based on the quantitative understanding of surface flooding, we suggest effective anti-flooding strategies through tailoring the nanoscale coating heterogeneity and structure length scale. Experimental verification is conducted using CuO nanostructures having different length scales combined with hydrophobic coatings with different nanoscale heterogeneities. The proposed anti-flooding SHPo can provide a ∼130% enhanced average heat transfer coefficient with ∼14% larger supersaturation range for droplet jumping compared to a previous CuO SHPo. The proposed anti-flooding parameter and the scalable SHPo will help develop high-performance condensers for real-world applications operating in a wide range of supersaturation levels.

5.
ACS Appl Mater Interfaces ; 10(37): 31765-31776, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30136846

RESUMEN

We introduce a thin (<200 nm) superhydrophobic cerium-oxide surface formed by a one-step wet chemical process to enhance the condensation heat-transfer performance with improved thermal stability compared to silane-treated surfaces. The developed cerium-oxide surface showed a superhydrophobic characteristic with a low (<5°) contact angle hysteresis because of the unique surface morphology and hydrophobicity of cerium oxide. The surface was successfully incorporated to popular engineering materials including copper, aluminum, and steel. Thermal stability of the surfaces was investigated by exposing them to hot (∼100 °C) steam conditions for 12 h. The introduced ceria surfaces could maintain active dropwise condensation after the thermal stability test, whereas silane-treated surfaces completely lost their hydrophobicity. The heat-transfer coefficient was calculated using the thermal network model incorporating the droplet size distribution and morphology obtained from the microscopic measurement. The analysis shows that the suggested cerium-oxide surfaces can provide approximately 2 times and 5 times higher heat-transfer coefficient before and after the thermal stability test, respectively, mainly because of the decrease in the thermal conduction resistance across droplets. The results indicate that the introduced nanostructured cerium-oxide surface is a promising condenser coating to enhance the droplet mobility and the resulting condensation heat-transfer performance for various thermal and environmental applications, especially those being exposed to hot steam conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...