Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37420986

RESUMEN

We fabricated an air-tunnel structure between a gallium nitride (GaN) layer and trapezoid-patterned sapphire substrate (TPSS) through the in situ carbonization of a photoresist layer to enable rapid chemical lift-off (CLO). A trapezoid-shaped PSS was used, which is advantageous for epitaxial growth on the upper c-plane when forming an air tunnel between the substrate and GaN layer. The upper c-plane of the TPSS was exposed during carbonization. This was followed by selective GaN epitaxial lateral overgrowth using a homemade metal organic chemical vapor deposition system. The air tunnel maintained its structure under the GaN layer, whereas the photoresist layer between the GaN layer and TPSS disappeared. The crystalline structures of GaN (0002) and (0004) were investigated using X-ray diffraction. The photoluminescence spectra of the GaN templates with and without the air tunnel showed an intense peak at 364 nm. The Raman spectroscopy results for the GaN templates with and without the air tunnel were redshifted relative to the results for free-standing GaN. The CLO process using potassium hydroxide solution neatly separated the GaN template with the air tunnel from the TPSS.

2.
Materials (Basel) ; 16(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36984342

RESUMEN

This study provides experimental evidence regarding the mechanism of gallium nitride (GaN) selective-area growth (SAG) on a polished plateau-patterned sapphire substrate (PP-PSS), on which aluminum nitride (AlN) buffer layers are deposited under the same deposition conditions. The SAG of GaN was only observed on the plateau region of the PP-PSS, irrespective of the number of growth cycles. Indirect samples deposited on the bare c-plane substrate were prepared to determine the difference between the AlN buffer layers in the plateau region and silicon oxide (SiO2). The AlN buffer layer in the plateau region exhibited a higher surface energy, and its crystal orientation is indicated by AlN [001]. In contrast, regions other than the plateau region did not exhibit crystallinity and presented lower surface energies. The direct analysis results of PP-PSS using transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD) are similar to the results of the indirect samples. Therefore, under the same conditions, the GaN SAG of the deposited layer is related to crystallinity, crystal orientation, and surface energy.

3.
Planta Med ; 85(17): 1363-1373, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31618776

RESUMEN

Lespedeza bicolor, a traditional herbal medicine widely used in Australia, North America, and Eastern Asia, has various therapeutic effects on inflammation, nephritis, hyperpigmentation, and diuresis. In this study, to evaluate the effects of L. bicolor on cognitive function, we examined whether L. bicolor improved amyloid beta-induced memory impairment and assessed the possible mechanisms in mice. Catechin, rutin, daidzein, luteolin, naringenin, and genistein were identified in the powdered extract of L. bicolor by HPCL-DAD analyses. In behavioral experiments, L. bicolor (25 and 50 mg/kg, p. o.) significantly improved amyloid beta25 - 35 (6 nmol, intracerebroventricular)-induced cognitive dysfunction in the Y-maze, novel recognition, and passive avoidance tests. Our molecular studies showed L. bicolor (25 and 50 mg/kg, p. o.) significantly recovered the reduced glutathione content as well as increased thiobarbituric acid reactive substance and acetylcholinesterase activities in the hippocampus. Furthermore, we found that L. bicolor significantly increased the expression of brain-derived neurotrophic factor, and phospho-Akt, extracellular signal-regulated kinase, and cAMP response element binding caused by amyloid beta25 - 35 in the hippocampus. In conclusion, L. bicolor exerts a potent memory-enhancing effect on cognitive dysfunction induced by amyloid beta25 - 35 in mice.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Lespedeza/química , Trastornos de la Memoria/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Péptidos beta-Amiloides , Animales , Cognición/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Trastornos de la Memoria/inducido químicamente , Ratones , Fragmentos de Péptidos , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba
4.
Biomol Ther (Seoul) ; 26(5): 432-438, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29310424

RESUMEN

Worldwide, caffeine is among the most commonly used stimulatory substances. Unfortunately, significant caffeine consumption is associated with several adverse effects, ranging from sleep disturbances (including insomnia) to cardiovascular problems. This study investigates whether treatment with the Evodia rutaecarpa aqueous extract (ERAE) from berries and its major molecular component, evodiamine, can reduce the adverse caffeine-induced sleep-related and excitation effects. We combined measurements from the pentobarbital-induced sleep test, the open field test, and the locomotor activity test in mice that had been dosed with caffeine. We found that ERAE and evodiamine administration reduced the degree of caffeine-induced sleep disruption during the sleep test. Additionally, we found that evodiamine significantly inhibits caffeine-induced excitation during the open field test, as well as decreasing hyperlocomotion in the locomotor activity test. Additional in vitro experiments showed that caffeine administration decreased the expression of γ-aminobutyric acid (GABA)A receptor subunits in the mouse hypothalamus. However, evodiamine treatment significantly reversed this expression reduction. Taken together, our results demonstrate that ERAE and its major compound, evodiamine, provide an excellent candidate for the treatment or prevention of caffeine-induced sleep disturbances and excitatory states, and that the mechanism of these beneficial effects acts, at least in part, through the GABAA-ergic system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA