Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 26(5): 784-796, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600234

RESUMEN

DNA-protein crosslinks (DPCs) induced by aldehydes interfere with replication and transcription. Hereditary deficiencies in DPC repair and aldehyde clearance processes cause progeria, including Ruijs-Aalfs syndrome (RJALS) and AMeD syndrome (AMeDS) in humans. Although the elimination of DPC during replication has been well established, how cells overcome DPC lesions in transcription remains elusive. Here we show that endogenous aldehyde-induced DPC roadblocks are efficiently resolved by transcription-coupled repair (TCR). We develop a high-throughput sequencing technique to measure the genome-wide distribution of DPCs (DPC-seq). Using proteomics and DPC-seq, we demonstrate that the conventional TCR complex as well as VCP/p97 and the proteasome are required for the removal of formaldehyde-induced DPCs. TFIIS-dependent cleavage of RNAPII transcripts protects against transcription obstacles. Finally, a mouse model lacking both aldehyde clearance and TCR confirms endogenous DPC accumulation in actively transcribed regions. Collectively, our data provide evidence that transcription-coupled DPC repair (TC-DPCR) as well as aldehyde clearance are crucial for protecting against metabolic genotoxin, thus explaining the molecular pathogenesis of AMeDS and other disorders associated with defects in TCR, such as Cockayne syndrome.


Asunto(s)
Aldehídos , Reparación del ADN , Transcripción Genética , Animales , Humanos , Aldehídos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Ratones , ADN/metabolismo , ADN/genética , Daño del ADN , Ratones Noqueados , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Ratones Endogámicos C57BL , Formaldehído/toxicidad , Formaldehído/farmacología , Reparación por Escisión
2.
iScience ; 27(2): 108872, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38318390

RESUMEN

Recent single-cell analyses have revealed the complexity of microglial heterogeneity in brain development, aging, and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Disease-associated microglia (DAMs) have been identified in ALS mice model, but their role in ALS pathology remains unclear. The effect of genetic background variations on microglial heterogeneity and functions remains unknown. Herein, we established and analyzed two mice models of ALS with distinct genetic backgrounds of C57BL/6 and BALB/c. We observed that the change in genetic background from C57BL/6 to BALB/c affected microglial heterogeneity and ALS pathology and its progression, likely due to the defective induction of neurotrophic factor-secreting DAMs and impaired microglial survival. Single-cell analyses of ALS mice revealed new markers for each microglial subtype and a possible association between microglial heterogeneity and systemic immune environments. Thus, we highlighted the role of microglia in ALS pathology and importance of genetic background variations in modulating microglial functions.

3.
Nat Commun ; 14(1): 5607, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714828

RESUMEN

CRISPR/Cas9-mediated gene editing has great potential utility for treating genetic diseases. However, its therapeutic applications are limited by unintended genomic alterations arising from DNA double-strand breaks and random integration of exogenous DNA. In this study, we propose NICER, a method for correcting heterozygous mutations that employs multiple nicks (MNs) induced by Cas9 nickase and a homologous chromosome as an endogenous repair template. Although a single nick near the mutation site rarely leads to successful gene correction, additional nicks on homologous chromosomes strongly enhance gene correction efficiency via interhomolog homologous recombination (IH-HR). This process partially depends on BRCA1 and BRCA2, suggesting the existence of several distinct pathways for MN-induced IH-HR. According to a genomic analysis, NICER rarely induces unintended genomic alterations. Furthermore, NICER restores the expression of disease-causing genes in cells derived from genetic diseases with compound heterozygous mutations. Overall, NICER provides a precise strategy for gene correction.


Asunto(s)
Antibacterianos , Recombinación Homóloga , Mutación , Roturas del ADN de Doble Cadena , Desoxirribonucleasa I
4.
Proc Natl Acad Sci U S A ; 120(27): e2217423120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364129

RESUMEN

Xeroderma pigmentosum (XP) is a genodermatosis defined by cutaneous photosensitivity with an increased risk of skin tumors because of DNA repair deficiency. The worldwide prevalence of XP is ~1 to 4 in million, with higher incidence in some countries and regions including Japan (1 in 22,000) and North Africa due to founder mutations and a high degree of consanguinity. Among XP, the complementation group F (XP-F), is a rare form (1% of worldwide XP); however, this is underdiagnosed, because the ERCC4/XPF gene is essential for fetal development and most of previously reported ERCC4/XPF pathogenic variants are hypomorphs causing relatively mild phenotypes. From the largest Japanese XP cohort study, we report 17 XP-F cases bearing two pathogenic variants, both identified in deep intronic regions of the ERCC4/XPF gene. The first variant, located in intron 1, is a Japanese founder mutation, which additionally accounts for ~10% of the entire Japanese XP cases (MAF = 0.00196), causing an aberrant pre-mRNA splicing due to a miss-binding of U1snRNA. The second mutation located in intron eight induces an alternative polyadenylation. Both mutations cause a reduction of the ERCC4/XPF gene expression, resulting in XP clinical manifestations. Most cases developed early-onset skin cancers, indicating that these variants need critical attention. We further demonstrate that antisense oligonucleotides designed for the mutations can restore the XPF protein expression and DNA repair capacity in the patients' cells. Collectively, these pathogenic variants can be potential therapeutic targets for XP.


Asunto(s)
Dermatitis , Xerodermia Pigmentosa , Humanos , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/terapia , Xerodermia Pigmentosa/metabolismo , Reparación del ADN/genética , Intrones/genética , Estudios de Cohortes , Mutación , Dermatitis/genética
5.
Front Pediatr ; 10: 1048002, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405817

RESUMEN

Aicardi-Goutières syndrome (AGS) is a rare genetic disorder characterised by progressive encephalopathy, involving microcephaly, intracranial calcification, and cerebrospinal fluid lymphocytosis with increased interferon-α concentrations. The clinical features of AGS overlap with fetal cerebral anomalies caused by congenital infections, such as TORCH (toxoplasmosis, other, rubella, cytomegalovirus, and herpes), or with those of other genetic disorders showing neonatal microcephaly, including Cockayne syndrome (CS) with transcription-coupled DNA repair deficiency, and Seckel syndrome (SS) showing aberrant cell-cycle checkpoint signaling. Therefore, a differential diagnosis to confirm the genetic cause or a proof of infection should be considered. In this report, we describe an individual who showed primordial dwarfism and encephalopathy, and whose initial diagnosis was CS. First, we conducted conventional DNA repair proficiency tests for the patient derived fibroblast cells. Transcription-coupled nucleotide excision repair (TC-NER) activity, which is mostly compromised in CS cases, was slightly reduced in the patient's cells. However, unscheduled DNA synthesis (UDS) was significantly diminished. These cellular traits were inconsistent with the diagnosis of CS. We further performed whole exome sequencing for the case and identified a compound heterozygous loss-of-function variants in the SAMHD1 gene, mutations in which are known to cause AGS. As SAMHD1 encodes deoxyribonucleoside triphosphate triphosphohydrolase, we reasoned that the deoxyribonucleoside triphosphate (dNTP) pool size in the patient's cells was elevated, and the labeling efficiency of UDS-test was hindered due to the reduced concentration of phosphorylated ethynyl deoxyuridine (EdU), a nucleoside analogue used for the assay. In conclusion, UDS assay may be a useful diagnostic tool to distinguish between AGS with SAMHD1 mutations and other related diseases.

6.
Sci Adv ; 6(51)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33355142

RESUMEN

Rs671 in the aldehyde dehydrogenase 2 gene (ALDH2) is the cause of Asian alcohol flushing response after drinking. ALDH2 detoxifies endogenous aldehydes, which are the major source of DNA damage repaired by the Fanconi anemia pathway. Here, we show that the rs671 defective allele in combination with mutations in the alcohol dehydrogenase 5 gene, which encodes formaldehyde dehydrogenase (ADH5FDH ), causes a previously unidentified disorder, AMeD (aplastic anemia, mental retardation, and dwarfism) syndrome. Cellular studies revealed that a decrease in the formaldehyde tolerance underlies a loss of differentiation and proliferation capacity of hematopoietic stem cells. Moreover, Adh5-/-Aldh2 E506K/E506K double-deficient mice recapitulated key clinical features of AMeDS, showing short life span, dwarfism, and hematopoietic failure. Collectively, our results suggest that the combined deficiency of formaldehyde clearance mechanisms leads to the complex clinical features due to overload of formaldehyde-induced DNA damage, thereby saturation of DNA repair processes.

7.
Cell ; 180(6): 1228-1244.e24, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32142649

RESUMEN

Transcription-coupled nucleotide excision repair (TC-NER) is initiated by the stalling of elongating RNA polymerase II (RNAPIIo) at DNA lesions. The ubiquitination of RNAPIIo in response to DNA damage is an evolutionarily conserved event, but its function in mammals is unknown. Here, we identified a single DNA damage-induced ubiquitination site in RNAPII at RPB1-K1268, which regulates transcription recovery and DNA damage resistance. Mechanistically, RPB1-K1268 ubiquitination stimulates the association of the core-TFIIH complex with stalled RNAPIIo through a transfer mechanism that also involves UVSSA-K414 ubiquitination. We developed a strand-specific ChIP-seq method, which revealed RPB1-K1268 ubiquitination is important for repair and the resolution of transcriptional bottlenecks at DNA lesions. Finally, RPB1-K1268R knockin mice displayed a short life-span, premature aging, and neurodegeneration. Our results reveal RNAPII ubiquitination provides a two-tier protection mechanism by activating TC-NER and, in parallel, the processing of DNA damage-stalled RNAPIIo, which together prevent prolonged transcription arrest and protect against neurodegeneration.


Asunto(s)
Reparación del ADN/fisiología , ARN Polimerasa II/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , ADN/metabolismo , Daño del ADN/fisiología , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Femenino , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Polimerasa II/genética , Ubiquitinación
8.
J Allergy Clin Immunol ; 136(4): 1007-17, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26255102

RESUMEN

BACKGROUND: Nonhomologous end-joining (NHEJ) is the major DNA double-strand break (DSB) repair mechanism in human cells. The final rejoining step requires DNA ligase IV (LIG4) together with the partner proteins X-ray repair cross-complementing protein 4 (XRCC4) and XRCC4-like factor. Patients with mutations in genes encoding LIG4, XRCC4-like factor, or the other NHEJ proteins DNA-dependent protein kinase catalytic subunit and Artemis are DSB repair defective and immunodeficient because of the requirement for NHEJ during V(D)J recombination. OBJECTIVE: We found a patient displaying microcephaly and progressive ataxia but a normal immune response. We sought to determine pathogenic mutations and to describe the molecular pathogenesis of the patient. METHODS: We performed next-generation exome sequencing. We evaluated the DSB repair activities and V(D)J recombination capacity of the patient's cells, as well as performing a standard blood immunologic characterization. RESULTS: We identified causal mutations in the XRCC4 gene. The patient's cells are radiosensitive and display the most severe DSB repair defect we have encountered using patient-derived cell lines. In marked contrast, a V(D)J recombination plasmid assay revealed that the patient's cells did not display the junction abnormalities that are characteristic of other NHEJ-defective cell lines. The mutant protein can interact efficiently with LIG4 and functions normally in in vitro assays and when transiently expressed in vivo. However, the mutation makes the protein unstable, and it undergoes proteasome-mediated degradation. CONCLUSION: Our findings reveal a novel separation of impact phenotype: there is a pronounced DSB repair defect and marked clinical neurological manifestation but no clinical immunodeficiency.


Asunto(s)
Ataxia/genética , Proteínas de Unión al ADN/genética , Síndromes de Inmunodeficiencia/genética , Microcefalia/genética , Estabilidad Proteica , Ataxia/inmunología , ADN Ligasa (ATP) , ADN Ligasas/metabolismo , Análisis Mutacional de ADN , Reparación del ADN/genética , Femenino , Células HEK293 , Humanos , Síndromes de Inmunodeficiencia/inmunología , Microcefalia/inmunología , Mutación/genética , Unión Proteica/genética , Tolerancia a Radiación/genética , Recombinación V(D)J/genética , Adulto Joven
9.
Nat Protoc ; 10(1): 12-24, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25474029

RESUMEN

DNA repair systems protect cells from genomic instability and carcinogenesis. Therefore, assays for measuring DNA repair activity are valuable, not only for clinical diagnoses of DNA repair deficiency disorders but also for basic research and anticancer drug development. Two commonly used assays are UDS (unscheduled DNA synthesis, requiring a precise measurement of an extremely small amount of repair DNA synthesis) and RRS (recovery of RNA synthesis after DNA damage). Both UDS and RRS are major endpoints for assessing the activity of nucleotide excision repair (NER), the most versatile DNA repair process. Conventional UDS and RRS assays are laborious and time-consuming, as they measure the incorporation of radiolabeled nucleosides associated with NER. Here we describe a comprehensive protocol for monitoring nonradioactive UDS and RRS by studying the incorporation of alkyne-conjugated nucleoside analogs followed by a fluorescent azide-coupling click-chemistry reaction. The system is also suitable for quick measurement of cell sensitivity to DNA-damaging reagents and for lentivirus-based complementation assays, which can be used to systematically determine the pathogenic genes associated with DNA repair deficiency disorders. A typical UDS or RRS assay using primary fibroblasts, including a virus complementation test, takes 1 week to complete.


Asunto(s)
Alquinos/química , Azidas/química , Bioensayo/métodos , Química Clic/métodos , Reparación del ADN/fisiología , Nucleósidos/química , ADN/biosíntesis , Fluorescencia , Prueba de Complementación Genética/métodos , Humanos , Lentivirus , ARN/biosíntesis , Conteo por Cintilación , Rayos Ultravioleta
10.
J Clin Invest ; 123(7): 2969-80, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23722905

RESUMEN

The DNA-dependent protein kinase catalytic subunit (DNA-PKcs; encoded by PRKDC) functions in DNA non-homologous end-joining (NHEJ), the major DNA double strand break (DSB) rejoining pathway. NHEJ also functions during lymphocyte development, joining V(D)J recombination intermediates during antigen receptor gene assembly. Here, we describe a patient with compound heterozygous mutations in PRKDC, low DNA-PKcs expression, barely detectable DNA-PK kinase activity, and impaired DSB repair. In a heterologous expression system, we found that one of the PRKDC mutations inactivated DNA-PKcs, while the other resulted in dramatically diminished but detectable residual function. The patient suffered SCID with reduced or absent T and B cells, as predicted from PRKDC-deficient animal models. Unexpectedly, the patient was also dysmorphic; showed severe growth failure, microcephaly, and seizures; and had profound, globally impaired neurological function. MRI scans revealed microcephaly-associated cortical and hippocampal dysplasia and progressive atrophy over 2 years of life. These neurological features were markedly more severe than those observed in patients with deficiencies in other NHEJ proteins. Although loss of DNA-PKcs in mice, dogs, and horses was previously shown not to impair neuronal development, our findings demonstrate a stringent requirement for DNA-PKcs during human neuronal development and suggest that high DNA-PK protein expression is required to sustain efficient pre- and postnatal neurogenesis.


Asunto(s)
Anomalías Múltiples/diagnóstico , Encéfalo/anomalías , Proteína Quinasa Activada por ADN/genética , Microcefalia/diagnóstico , Proteínas Nucleares/genética , Inmunodeficiencia Combinada Grave/diagnóstico , Anomalías Múltiples/enzimología , Anomalías Múltiples/genética , Secuencia de Aminoácidos , Secuencia de Bases , Línea Celular , Preescolar , Secuencia Conservada , Análisis Mutacional de ADN , Reparación del ADN , Resultado Fatal , Estudios de Asociación Genética , Humanos , Masculino , Microcefalia/enzimología , Microcefalia/genética , Técnicas de Diagnóstico Molecular , Datos de Secuencia Molecular , Mutación Missense , Mutación Puntual , Inmunodeficiencia Combinada Grave/enzimología , Inmunodeficiencia Combinada Grave/genética
11.
Am J Hum Genet ; 92(5): 807-19, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23623389

RESUMEN

Cockayne syndrome (CS) is a genetic disorder characterized by developmental abnormalities and photodermatosis resulting from the lack of transcription-coupled nucleotide excision repair, which is responsible for the removal of photodamage from actively transcribed genes. To date, all identified causative mutations for CS have been in the two known CS-associated genes, ERCC8 (CSA) and ERCC6 (CSB). For the rare combined xeroderma pigmentosum (XP) and CS phenotype, all identified mutations are in three of the XP-associated genes, ERCC3 (XPB), ERCC2 (XPD), and ERCC5 (XPG). In a previous report, we identified several CS cases who did not have mutations in any of these genes. In this paper, we describe three CS individuals deficient in ERCC1 or ERCC4 (XPF). Remarkably, one of these individuals with XP complementation group F (XP-F) had clinical features of three different DNA-repair disorders--CS, XP, and Fanconi anemia (FA). Our results, together with those from Bogliolo et al., who describe XPF alterations resulting in FA alone, indicate a multifunctional role for XPF.


Asunto(s)
Síndrome de Cockayne/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Anemia de Fanconi/genética , Predisposición Genética a la Enfermedad/genética , Fenotipo , Xerodermia Pigmentosa/genética , Secuencia de Aminoácidos , Secuencia de Bases , Síndrome de Cockayne/enzimología , Síndrome de Cockayne/patología , Cartilla de ADN/genética , Anemia de Fanconi/enzimología , Anemia de Fanconi/patología , Resultado Fatal , Femenino , Humanos , Masculino , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Xerodermia Pigmentosa/enzimología , Xerodermia Pigmentosa/patología
12.
Nat Genet ; 44(5): 586-92, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22466610

RESUMEN

UV-sensitive syndrome (UV(S)S) is a genodermatosis characterized by cutaneous photosensitivity without skin carcinoma. Despite mild clinical features, cells from individuals with UV(S)S, like Cockayne syndrome cells, are very UV sensitive and are deficient in transcription-coupled nucleotide-excision repair (TC-NER), which removes DNA damage in actively transcribed genes. Three of the seven known UV(S)S cases carry mutations in the Cockayne syndrome genes ERCC8 or ERCC6 (also known as CSA and CSB, respectively). The remaining four individuals with UVSS , one of whom is described for the first time here, formed a separate UV(S)S-A complementation group; however, the responsible gene was unknown. Using exome sequencing, we determine that mutations in the UVSSA gene (formerly known as KIAA1530) cause UV(S)S-A. The UVSSA protein interacts with TC-NER machinery and stabilizes the ERCC6 complex; it also facilitates ubiquitination of RNA polymerase IIo stalled at DNA damage sites. Our findings provide mechanistic insights into the processing of stalled RNA polymerase and explain the different clinical features across these TC-NER­deficient disorders.


Asunto(s)
Proteínas Portadoras/genética , Síndrome de Cockayne/genética , Daño del ADN/genética , Reparación del ADN/genética , Mutación/genética , ARN Polimerasa II/genética , Transcripción Genética , Rayos Ultravioleta , Daño del ADN/efectos de la radiación , ADN Helicasas/química , ADN Helicasas/genética , Reparación del ADN/efectos de la radiación , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Exoma/genética , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , ARN Polimerasa II/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...