Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Biol ; 298(2): 555-70, 2006 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16949568

RESUMEN

Ecdysteroids regulate many key developmental events in arthropods including molting and metamorphosis. Recently, members of the Drosophila Halloween group of genes, that are required for embryonic viability and cuticle deposition, have been shown to code for several cytochrome P450 enzymes that catalyze the terminal hydroxylation steps in the conversion of cholesterol to the molting hormone 20-hydroxyecdysone. These P450s are conserved in other insects and each is thought to function throughout development as the sole mediator of a particular biosynthetic step since, where analyzed, each is expressed at all stages of development and shows no closely related homolog in their respective genomes. In contrast, we show here that several dipteran genomes encode two novel, highly related, microsomal P450 enzymes, Cyp307A1 and Cyp307A2, that likely participate as stage-specific components of the ecdysone biosynthetic machinery. This hypothesis comes from the observation that Cyp307A1 is encoded by the Halloween gene spook (spo), but unlike other Halloween class genes, Dmspo is not expressed during the larval stages. In contrast, Cyp307a2, dubbed spookier (spok), is expressed primarily during larval stages within the prothoracic gland cells of the ring gland. RNAi mediated reduction in the expression of this heterochromatin localized gene leads to arrest at the first instar stage which can be rescued by feeding the larva 20E, E or ketodiol but not 7dC. In addition, spok expression is eliminated in larvae carrying mutations in molting defective (mld), a gene encoding a nuclear zinc finger protein that is required for production of ecdysone during Drosophila larval development. Intriguingly, mld is not present in the Bombyx mori genome, and we have identified only one spook homolog in both Bombyx and Manduca that is expressed in both embryos and larva. These studies suggest an evolutionary split between Diptera and Lepidoptera in how the ecdysone biosynthetic pathway is regulated during development.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Dípteros/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ecdisona/biosíntesis , Secuencia de Aminoácidos , Animales , Línea Celular , Sistema Enzimático del Citocromo P-450/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Evolución Molecular , Larva/crecimiento & desarrollo , Microsomas/metabolismo , Datos de Secuencia Molecular , Proteínas Mutantes , Proteínas Nucleares/genética , Linaje , Fenotipo , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Tórax/metabolismo , Distribución Tisular , Transfección
2.
Dev Dyn ; 235(2): 315-26, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16273522

RESUMEN

Periodic pulses of the insect steroid molting hormone 20-hydroxyecdysone (20E), acting via its nuclear receptor complex (EcR/USP), control gene expression at many stages throughout Drosophila development. However, during the last larval instar of some lepidopteran insects, subtle changes in titers of ecdysteroids have been documented, including the so-called "commitment peak." This small elevation of 20E reprograms the larva for metamorphosis to the pupa. Similar periods of ecdysteroid immunoreactivity have been observed during the last larval instar of Drosophila. However, due to low amplitude and short duration, along with small body size and staging difficulties, their timing and ecdysteroid composition have remained uncertain. Employing a rigorous regimen of Drosophila culture and a salivary gland reporter gene, Sgs3-GFP, we used RP-HPLC and differential ecdysteroid RIA analysis to determine whole body titers of 20E during the last larval instar. Three small peaks of 20E were observed at 8, 20, and 28 hr following ecdysis, prior to the well-characterized large peak around the time of pupariation. The possible regulation of 20E levels by biosynthetic P450 enzymes and the roles of these early peaks in coordinating gene expression and late larval development are discussed.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Ecdisona/biosíntesis , Ecdisterona/biosíntesis , Regulación del Desarrollo de la Expresión Génica/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/genética , Ecdisona/química , Ecdisterona/química , Larva/química , Larva/genética , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Estructura Molecular , Radioinmunoensayo , Factores de Tiempo
3.
Neuron ; 33(4): 529-43, 2002 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-11856528

RESUMEN

Proper synaptic development is critical for establishing all aspects of neural function including learning, memory, and locomotion. Here, we describe the phenotypic consequences of mutations in the wishful thinking (wit) gene, the Drosophila homolog of the vertebrate BMP type II receptor. Mutations in wit result in pharate lethality that can be rescued by expression of a wit transgene in motor neurons but not in muscles. Mutant larvae exhibit small synapses, severe defects in evoked junctional potentials, a lower frequency of spontaneous vesicle release, and an alteration in the ultrastructure of synaptic active zones. These results reveal a novel role for BMP signaling in regulating Drosophila neuromuscular junction synapse assembly and activity and may indicate that similar pathways could govern vertebrate synapse development.


Asunto(s)
Sistema Nervioso Central/anomalías , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Mutación/fisiología , Unión Neuromuscular/anomalías , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética , Factores de Transcripción , Animales , Tipificación del Cuerpo/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/genética , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/ultraestructura , ADN Complementario/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/aislamiento & purificación , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/ultraestructura , Femenino , Genes Letales/genética , Inmunohistoquímica , Masculino , Datos de Secuencia Molecular , Neuronas Motoras/metabolismo , Neuronas Motoras/ultraestructura , Unión Neuromuscular/crecimiento & desarrollo , Unión Neuromuscular/ultraestructura , Plasticidad Neuronal/genética , Neurotransmisores/genética , Neurotransmisores/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas/aislamiento & purificación , Receptores de Superficie Celular/aislamiento & purificación , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...