Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Sens Diagn ; 3(7): 1119-1134, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39007012

RESUMEN

Point of care (POC) diagnostic devices provide a method for rapid accurate identification of disease through analysis of biologically relevant substances. This review focuses on the utility of POC testing for early detection of periodontitis, a critical factor in treating the disease. Accessing the oral cavity for biological sampling is less invasive when compared to other internal test sites, and oral fluids contain biomarkers indicative of periodontitis. The ease of access makes the mouth an excellent target location for the development of POC devices. In this review, accepted standards in industry by which these devices must adhere, provided by the World Health Organization such as REASSURED and CLIA, are discussed. An overview is provided for many periodontal biomarkers currently being investigated as a means of predicting periodontal disease and its progression. POC devices currently being investigated for the identification and monitoring of periodontal disease such as paper-based and lab-on-a-chip based devices are outlined. Limitations of current POC devices on the market are provided and future directions in leveraging biomarkers as an adjunctive method for oral diagnosis along with AI-based analysis systems are discussed. Here, we present the ESSENCE sensor platform, which combines a porous non-planar electrode with enhanced shear flow to achieve unprecedented sensitivity and selectivity. The combination of the ESENCE chip with an automated platform allows us to meet the WHO's ASSURED criteria. This platform promises to be an exciting POC candidate for early detection of periodontitis.

2.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928274

RESUMEN

Epigenetic modulation, including histone modification, alters gene expression and controls cell fate. Histone deacetylases (HDACs) are identified as important regulators of dental pulp cell (DPC) mineralisation processes. Currently, there is a paucity of information regarding the nature of histone modification and HDAC expression in the dentine-pulp complex during dentinogenesis. The aim of this study was to investigate post-translational histone modulation and HDAC expression during DPC mineralisation and the expression of Class I/II HDACs during tooth development and in adult teeth. HDAC expression (isoforms -1 to -6) was analysed in mineralising primary rat DPCs using qRT-PCR and Western blot with mass spectrometry being used to analyse post-translational histone modifications. Maxillary molar teeth from postnatal and adult rats were analysed using immunohistochemical (IHC) staining for HDACs (1-6). HDAC-1, -2, and -4 protein expression increased until days 7 and 11, but decreased at days 14 and 21, while other HDAC expression increased continuously for 21 days. The Class II mineralisation-associated HDAC-4 was strongly expressed in postnatal sample odontoblasts and DPCs, but weakly in adult teeth, while other Class II HDACs (-5, -6) were relatively strongly expressed in postnatal DPCs and adult odontoblasts. Among Class I HDACs, HDAC-1 showed high expression in postnatal teeth, notably in ameloblasts and odontoblasts. HDAC-2 and -3 had extremely low expression in the rat dentine-pulp complex. Significant increases in acetylation were noted during DPC mineralisation processes, while trimethylation H3K9 and H3K27 marks decreased, and the HDAC-inhibitor suberoylanilide hydroxamic acid (SAHA) enhanced H3K27me3. These results highlight a dynamic alteration in histone acetylation during mineralisation and indicate the relevance of Class II HDAC expression in tooth development and regenerative processes.


Asunto(s)
Pulpa Dental , Dentina , Dentinogénesis , Histona Desacetilasas , Animales , Acetilación , Ratas , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Dentina/metabolismo , Pulpa Dental/metabolismo , Pulpa Dental/citología , Pulpa Dental/crecimiento & desarrollo , Procesamiento Proteico-Postraduccional , Histonas/metabolismo , Diente Molar/metabolismo , Diente Molar/crecimiento & desarrollo , Odontoblastos/metabolismo , Masculino
3.
J Nat Med ; 78(3): 547-557, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38509426

RESUMEN

Photochemical reactions are powerful tools for synthesizing organic molecules. The input of energy provided by light offers a means to produce strained and unique molecules that cannot be assembled using thermal protocols, allowing for the production of immense molecular complexity in a single chemical step. Furthermore, unlike thermal reactions, photochemical reactions do not require active reagents such as acids, bases, metals, or enzymes. Photochemical reactions play a central role in green chemistry. This article reports the isolation and structure determination of four new compounds (1-4) from the photoreaction products of the Polyozellus multiplex MeOH ext. The structures of the new compounds were elucidated using MS, IR, comprehensive NMR measurements and microED. The four compounds were formed by deacetylation of polyozellin, the main secondary metabolite of P. multiplex, and addition of singlet oxygen generated by sunlight. To develop drugs for treating Alzheimer's disease (AD) on the basis of the amyloid cascade hypothesis, the compounds (1-4) obtained by photoreaction were evaluated for BACE1 inhibitory activity. The hydrolysates (5 and 6) of polyozellin, the main secondary metabolites of P. multiplex, were also evaluated. The photoreaction products (3 and 4) and hydrolysates (5 and 6) of polyozellin showed BACE1 inhibitory activity (IC50: 2.2, 16.4, 23.3, and 5.3 µM, respectively).


Asunto(s)
Cuerpos Fructíferos de los Hongos , Cuerpos Fructíferos de los Hongos/química , Estructura Molecular , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Procesos Fotoquímicos
4.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255947

RESUMEN

MMP13 gene expression increases up to 2000-fold in mineralizing dental pulp cells (DPCs), with research previously demonstrating that global MMP13 deletion resulted in critical alterations in the dentine phenotype, affecting dentine-tubule regularity, the odontoblast palisade, and significantly reducing the dentine volume. Global MMP13-KO and wild-type mice of a range of ages had their molar teeth injured to stimulate reactionary tertiary dentinogenesis. The response was measured qualitatively and quantitatively using histology, immunohistochemistry, micro-CT, and qRT-PCR in order to assess changes in the nature and volume of dentine deposited as well as mechanistic links. MMP13 loss affected the reactionary tertiary dentine quality and volume after cuspal injury and reduced Nestin expression in a non-exposure injury model, as well as mechanistic links between MMP13 and the Wnt-responsive gene Axin2. Acute pulpal injury and pulp exposure to oral fluids in mice teeth showed upregulation of the MMP13 in vivo, with an increase in the gene expression of Mmp8, Mmp9, and Mmp13 evident. These results indicate that MMP13 is involved in tertiary reactionary dentine formation after tooth injury in vivo, potentially acting as a key molecule in the dental pulp during dentine-pulp repair processes.


Asunto(s)
Dentinogénesis , Metaloproteinasa 13 de la Matriz , Traumatismos de los Dientes , Animales , Ratones , Dentinogénesis/genética , Metaloproteinasa 13 de la Matriz/genética , Diente Molar , Odontoblastos
5.
Bioact Mater ; 27: 574-593, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37213443

RESUMEN

This opinion-led review paper highlights the need for novel translational research in vital-pulp-treatment (VPT), but also discusses the challenges in translating evidence to clinics. Traditional dentistry is expensive, invasive and relies on an outmoded mechanical understanding of dental disease, rather than employing a biological perspective that harnesses cell activity and the regenerative-capacity. Recent research has focussed on developing minimally-invasive biologically-based 'fillings' that preserve the dental pulp; research that is shifting the paradigm from expensive high-technology dentistry, with high failure rates, to smart restorations targeted at biological processes. Current VPTs promote repair by recruiting odontoblast-like cells in a material-dependent process. Therefore, exciting opportunities exist for development of next-generation biomaterials targeted at regenerative processes in the dentin-pulp complex. This article analyses recent research using pharmacological-inhibitors to therapeutically-target histone-deacetylase (HDAC) enzymes in dental-pulp-cells (DPCs) that stimulate pro-regenerative effects with limited loss of viability. Consequently, HDAC-inhibitors have the potential to enhance biomaterial-driven tissue responses at low concentration by influencing the cellular processes with minimal side-effects, providing an opportunity to develop a topically-placed, inexpensive bio-inductive pulp-capping material. Despite positive results, clinical translation of these innovations requires enterprise to counteract regulatory obstacles, dental-industry priorities and to develop strong academic/industry partnerships. The aim of this opinion-led review paper is to discuss the potential role of therapeutically-targeting epigenetic modifications as part of a topical VPT strategy in the treatment of the damaged dental pulp, while considering the next steps, material considerations, challenges and future for the clinical development of epigenetic therapeutics or other 'smart' restorations in VPT.

6.
Pharmaceutics ; 14(8)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36015305

RESUMEN

The rise of antibiotic resistant bacteria due to overuse and misuse of antibiotics in medicine and dentistry is a growing concern. New approaches are needed to combat antibiotic resistant (AR) bacterial infections. There are a number of methods available and in development to address AR infections. Dentists conventionally use chemicals such as chlorohexidine and calcium hydroxide to kill oral bacteria, with many groups recently developing more biocompatible antimicrobial peptides (AMPs) for use in the oral cavity. AMPs are promising candidates in the treatment of (oral) infections. Also known as host defense peptides, AMPs have been isolated from animals across all kingdoms of life and play an integral role in the innate immunity of both prokaryotic and eukaryotic organisms by responding to pathogens. Despite progress over the last four decades, there are only a few AMPs approved for clinical use. This review summarizes an Introduction to Oral Microbiome and Oral Infections, Traditional Antibiotics and Alternatives & Antimicrobial Peptides. There is a focus on cationic AMP characteristics and mechanisms of actions, and an overview of animal-derived natural and synthetic AMPs, as well as observed microbial resistance.

7.
Front Cell Dev Biol ; 10: 883266, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35531096

RESUMEN

Matrix-metalloproteinase-13 (MMP13) is important for bone formation and remodeling; however, its role in tooth development remains unknown. To investigate this, MMP13-knockout (Mmp13 -/- ) mice were used to analyze phenotypic changes in the dentin-pulp complex, mineralization-associated marker-expression, and mechanistic interactions. Immunohistochemistry demonstrated high MMP13-expression in pulp-tissue, ameloblasts, odontoblasts, and dentin in developing WT-molars, which reduced in adults, with human-DPC cultures demonstrating a >2000-fold increase in Mmp13-expression during mineralization. Morphologically, Mmp13 -/- molars displayed critical alterations in the dentin-phenotype, affecting dentin-tubule regularity, the odontoblast-palisade and predentin-definition with significantly reduced dentin volume (∼30% incisor; 13% molar), and enamel and dentin mineral-density. Reactionary-tertiary-dentin in response to injury was reduced at Mmp13 -/- molar cusp-tips but with significantly more dystrophic pulpal mineralization in MMP13-null samples. Odontoblast differentiation-markers, nestin and DSP, reduced in expression after MMP13-loss in vivo, with reduced calcium deposition in MMP13-null DPC cultures. RNA-sequencing analysis of WT and Mmp13 -/- pulp highlighted 5,020 transcripts to have significantly >2.0-fold change, with pathway-analysis indicating downregulation of the Wnt-signaling pathway, supported by reduced in vivo expression of the Wnt-responsive gene Axin2. Mmp13 interaction with Axin2 could be partly responsible for the loss of odontoblastic activity and alteration to the tooth phenotype and volume which is evident in this study. Overall, our novel findings indicate MMP13 as critical for tooth development and mineralization processes, highlighting mechanistic interaction with the Wnt-signaling pathway.

8.
Bioact Mater ; 14: 290-301, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35310357

RESUMEN

The dental pulp has irreplaceable roles in maintaining healthy teeth and its regeneration is a primary aim of regenerative endodontics. This study aimed to replicate the characteristics of dental pulp tissue by using cranial neural crest (CNC)-like cells (CNCLCs); these cells were generated by modifying several steps of a previously established method for deriving NC-like cells from induced pluripotent stem cells (iPSCs). CNC is the anterior region of the neural crest in vertebrate embryos, which contains the primordium of dental pulp cells or odontoblasts. The produced CNCLCs showed approximately 2.5-12,000-fold upregulations of major CNC marker genes. Furthermore, the CNCLCs exhibited remarkable odontoblastic differentiation ability, especially when treated with a combination of the fibroblast growth factors (FGFs) FGF4 and FGF9. The FGFs induced odontoblast marker genes by 1.7-5.0-fold, as compared to bone morphogenetic protein 4 (BMP4) treatment. In a mouse subcutaneous implant model, the CNCLCs briefly fated with FGF4 + FGF9 replicated dental pulp tissue characteristics, such as harboring odontoblast-like cells, a dentin-like layer, and vast neovascularization, induced by the angiogenic self-assembling peptide hydrogel (SAPH), SLan. SLan acts as a versatile biocompatible scaffold in the canal space. This study demonstrated a successful collaboration between regenerative medicine and SAPH technology.

9.
Bioact Mater ; 14: 234-249, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35310358

RESUMEN

The carious process leads to inflammation of pulp tissue. Current care options include root canal treatment or apexification. These procedures, however, result in the loss of tooth vitality, sensitivity, and healing. Pulp capping and dental pulp regeneration are continually evolving techniques to regenerate pulp tissue, avoiding necrosis and loss of vitality. Many studies have successfully employed stem/progenitor cell populations, revascularization approaches, scaffolds or material-based strategies for pulp regeneration. Here we outline advantages and disadvantages of different methods and techniques which are currently being used in the field of regenerative endodontics. We also summarize recent findings on efficacious peptide-based materials which target the dental niche.

.

10.
J Endod ; 48(2): 208-212.e3, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34780805

RESUMEN

INTRODUCTION: Diabetes mellitus (DM) is a complex multisystemic disorder that affects an estimated 21 million Americans. No studies have evaluated the association of DM with the prevalence of each pulpal diagnosis. The objective of this study was to compare the prevalence of each pulp diagnosis including symptomatic irreversible pulpitis (SIP), asymptomatic irreversible pulpitis, reversible pulpitis, normal pulp, and pulp necrosis (PN) in DM patients against a nondiabetic control group. METHODS: A retrospective chart review was approved by Rutgers University Institutional Review Board. The prevalence of the diagnoses SIP, asymptomatic irreversible pulpitis, reversible pulpitis, normal pulp, and PN was calculated from AxiUm (Exan software, Las Vegas, NV) electronic health records at Rutgers School of Dental Medicine. The chi-square test was used to see the relationship between the 2 categoric variables. Second, binary logistic regression analyses were performed for each group. RESULTS: A total of 2979 teeth were diagnosed with a pulp condition between April 2013 and November 2018. The total tooth number of DM patients was 682, whereas the tooth number of nondiabetic patients was 2297. In the subgroup of patients younger than 40 years old, SIP was notably more prevalent in DM patients. In addition, the prevalence of PN in elderly DM patients (60-69 years old) was significantly higher than in the control group. CONCLUSIONS: The prevalence of SIP in DM patients was significantly higher compared with the control group (<40 years old), suggesting the possibility that DM could hypersensitize the subgroup of patients younger than 40 years old to pulpitis pain.


Asunto(s)
Diabetes Mellitus , Pulpitis , Adulto , Anciano , Pulpa Dental , Diabetes Mellitus/epidemiología , Humanos , Persona de Mediana Edad , Prevalencia , Pulpitis/epidemiología , Estudios Retrospectivos
11.
Biochem Biophys Res Commun ; 567: 72-78, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34144503

RESUMEN

Enhancer of zeste homolog 2 (EZH2) is the catalytic core of polycomb repressive complex 2 (PRC2), which primarily methylates lysine 27 on histone H3 (H2K27me3), generating transcriptionally suppressed heterochromatin. Since EZH2 suppresses expression of genes involved in dentin formation, we examined the role of EZH2 in tooth development. Intriguingly, microCT analysis of teeth from mice with conditional Ezh2 knockout in uncommitted mesenchymal cells showed hyper-mineralization of enamel, which is produced by the epithelial-lineage cells, ameloblasts. Scanning electron microscopy analysis and nano-indentation of the incisor enamel from knockout mice revealed smaller inter-rod spaces and higher hardness compared to wild type enamel, respectively. Interestingly, expression of the calcium channel subunit gene, Orai2, was decreased compared to its competitor, Orai1, both in knockout mouse incisors and the ex vivo culture of ameloblasts with the surrounding tissues under EZH2 inhibition. Moreover, histological analysis of incisor from knockout mice showed decreased ameloblastin and expedited KLK4 expression in the ameloblasts. These observations suggest that EZH2 depletion in dental mesenchymal cells reduces enamel matrix formation and increases enamel protease activity from ameloblasts, resulting in enamel hyper-mineralization. This study demonstrates the significant role of the suppressive H3K27me3 mark for heterochromatin on enamel formation.


Asunto(s)
Esmalte Dental/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Células Madre Mesenquimatosas/metabolismo , Animales , Células Cultivadas , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Calcificación de Dientes
12.
Int J Mol Sci ; 22(10)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069553

RESUMEN

Orofacial pain is a universal predicament, afflicting millions of individuals worldwide. Research on the molecular mechanisms of orofacial pain has predominately focused on the role of neurons underlying nociception. However, aside from neural mechanisms, non-neuronal cells, such as Schwann cells and satellite ganglion cells in the peripheral nervous system, and microglia and astrocytes in the central nervous system, are important players in both peripheral and central processing of pain in the orofacial region. This review highlights recent molecular and cellular findings of the glia involvement and glia-neuron interactions in four common orofacial pain conditions such as headache, dental pulp injury, temporomandibular joint dysfunction/inflammation, and head and neck cancer. We will discuss the remaining questions and future directions on glial involvement in these four orofacial pain conditions.


Asunto(s)
Dolor Facial/metabolismo , Dolor Facial/fisiopatología , Neuroglía/fisiología , Animales , Dolor Facial/terapia , Neoplasias de Cabeza y Cuello/fisiopatología , Cefalea/fisiopatología , Humanos , Inflamación/fisiopatología , Microglía/fisiología , Neuronas/fisiología , Nocicepción/fisiología , Ganglio del Trigémino/fisiología
13.
JBMR Plus ; 5(5): e10483, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33977201

RESUMEN

Patients with type 1 diabetes mellitus (T1DM) exhibit reduced BMD and significant increases in fracture risk. Changes in BMD are attributed to blunted osteoblast activity and inhibited bone remodeling, but these cannot fully explain the impaired bone integrity in T1DM. The goal of this study was to determine the cellular mechanisms that contribute to impaired bone morphology and composition in T1DM. Nonobese diabetic (NOD) mice were used, along with µCT, histomorphometry, histology, Raman spectroscopy, and RNAseq analyses of several skeletal sites in response to naturally occurring hyperglycemia and insulin treatment. The bone volume in the axial skeleton was found to be severely reduced in diabetic NOD mice and was not completely resolved with insulin treatment. Decreased bone volume in diabetic mice was associated with increased sclerostin expression in osteocytes and attenuation of bone formation indices without changes in bone resorption. In the face of blunted bone remodeling, decreases in the mineral:matrix ratio were found in cortical bones of diabetic mice by Raman microspectroscopy, suggesting that T1DM did not affect the bone mineralization process per se, but rather resulted in microenvironmental alterations that favored mineral loss. Bone transcriptome analysis indicated metabolic shifts in response to T1DM. Dysregulation of genes involved in fatty acid oxidation, transport, and synthesis was found in diabetic NOD mice. Specifically, pyruvate dehydrogenase kinase isoenzyme 4 and glucose transporter 1 levels were increased, whereas phosphorylated-AKT levels were significantly reduced in diabetic NOD mice. In conclusion, in addition to the blunted bone formation, osteoblasts and osteocytes undergo metabolic shifts in response to T1DM that may alter the microenvironment and contribute to mineral loss from the bone matrix. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

14.
Acta Biomater ; 126: 109-118, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33689817

RESUMEN

Angiogenesis is critical for tissue healing and regeneration. Promoting angiogenesis in materials implanted within dental pulp after pulpectomy is a major clinical challenge in endodontics. We demonstrate the ability of acellular self-assembling peptide hydrogels to create extracellular matrix mimetic architectures that guide in vivo development of neovasculature and tissue deposition. The hydrogels possess facile injectability, as well as sequence-level functionalizability. We explore the therapeutic utility of an angiogenic hydrogel to regenerate vascularized pulp-like soft tissue in a large animal (canine) orthotopic model. The regenerated soft tissue recapitulates key features of native pulp, such as blood vessels, neural filaments, and an odontoblast-like layer next to dentinal tubules. Our study establishes angiogenic peptide hydrogels as potent scaffolds for promoting soft tissue regeneration in vivo. STATEMENT OF SIGNIFICANCE: A major challenge to endodontic tissue engineering is the lack of in situ angiogenesis within intracanal implants, especially after complete removal of the dental pulp. The lack of a robust vasculature in implants limit integration of matrices with the host tissue and regeneration of soft tissue. We demonstrate the development of an acellular material that promotes tissue revascularization in vivo without added growth factors, in a preclinical canine model of pulp-like soft-tissue regeneration. Such acellular biomaterials would facilitate pulp revascularization approaches in large animal models, and translation into human clinical trials.


Asunto(s)
Pulpa Dental , Hidrogeles , Animales , Materiales Biocompatibles , Matriz Extracelular , Humanos , Hidrogeles/farmacología , Ingeniería de Tejidos , Andamios del Tejido
15.
Artículo en Inglés | MEDLINE | ID: mdl-38947881

RESUMEN

For assessing the adequacy of vital pulp therapy for an inflamed pulp, the use of non-invasive diagnostic tools is necessary to avoid further damage to the teeth. Detection of biomarkers that are indicative of the inflammatory status in pulp can be a promising tool for this purpose. These biomarkers need to be reliably correlated with pulpal inflammation and to be easily detected without pulp exposure. This mini-review article aims to review biomarkers that are present in gingival crevicular fluid (GCF) in inflamed pulp conditions. Several studies have reported the availability of various biomarkers including cytokines, proteases, elastase, neuropeptides, and growth factors. Non-invasive pulpal diagnostic methods will be useful as well to determine reversibility, irreversibility, or necrosis of inflamed pulp. These types of molecular diagnoses via analyzing the proteome have revolutionized the medical field, and are one of the most promising empirical methodologies that a clinician can utilize for the proactive identification of pulpal disease.

16.
Clin Case Rep ; 8(4): 774-775, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32274057

RESUMEN

Most fetal ovarian cysts increase in size during the late stages of pregnancy. Early treatment of a huge neonatal cyst may reduce the risk of gastrointestinal obstruction.

17.
Front Genet ; 11: 1, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117431

RESUMEN

If dental caries (or tooth decay) progresses without intervention, the infection will advance through the dentine leading to severe pulpal inflammation (irreversible pulpitis) and pulp death. The current management of irreversible pulpits is generally root-canal-treatment (RCT), a destructive, expensive, and often unnecessary procedure, as removal of the injurious stimulus alone creates an environment in which pulp regeneration may be possible. Current dental-restorative-materials stimulate repair non-specifically and have practical limitations; as a result, opportunities exist for the development of novel therapeutic strategies to regenerate the damaged dentine-pulp complex. Recently, epigenetic modification of DNA-associated histone 'tails' has been demonstrated to regulate the self-renewal and differentiation potential of dental-stem-cell (DSC) populations central to regenerative endodontic treatments. As a result, the activities of histone deacetylases (HDAC) are being recognised as important regulators of mineralisation in both tooth development and dental-pulp-repair processes, with HDAC-inhibition (HDACi) promoting pulp cell mineralisation in vitro and in vivo. Low concentration HDACi-application can promote de-differentiation of DSC populations and conversely, increase differentiation and accelerate mineralisation in DSC populations. Therapeutically, various HDACi solutions can release bioactive dentine-matrix-components (DMCs) from the tooth's extracellular matrix; solubilised DMCs are rich in growth factors and can stimulate regenerative processes such as angiogenesis, neurogenesis, and mineralisation. The aim of this mini-review is to discuss the role of histone-acetylation in the regulation of DSC populations, while highlighting the importance of HDAC in tooth development and dental pulp regenerative-mineralisation processes, before considering the potential therapeutic application of HDACi in targeted biomaterials to the damaged pulp to stimulate regeneration.

18.
ACS Omega ; 3(6): 5980-5987, 2018 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-30023936

RESUMEN

Current standard of care for treating infected dental pulp, root canal therapy, retains the physical properties of the tooth to a large extent, but does not aim to rejuvenate the pulp tissue. Tissue-engineered acellular biomimetic hydrogels have great potential to facilitate the regeneration of the tissue through the recruitment of autologous stem cells. We propose the use of a dentinogenic peptide that self-assembles into ß-sheet-based nanofibers that constitute a biodegradable and injectable hydrogel for support of dental pulp stem cells. The peptide backbone contains a ß-sheet-forming segment and a matrix extracellular phosphoglycoprotein mimic sequence at the C-terminus. The high epitope presentation of the functional moiety in the self-assembled nanofibers may enable recapitulation of a functional niche for the survival and proliferation of autologous cells. We elucidated the hierarchical self-assembly of the peptide through biophysical techniques, including scanning electron microscopy and atomic force microscopy. The material property of the self-assembled hydrogel was probed though oscillatory rheometry, demonstrating its thixotropic nature. We also demonstrate the cytocompatibility of the hydrogel with respect to fibroblasts and dental pulp stem cells. The self-assembled peptide platform holds promise for guided dentinogenesis and it can be tailored to a variety of applications in soft tissue engineering and translational medicine in the future.

19.
Curr Oral Health Rep ; 5(4): 276-285, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30705803

RESUMEN

PURPOSE OF REVIEW: To summarize current views on the role and therapeutic potential of growth factors (GFs) within endodontic cell homing. RECENT FINDINGS: Cell homing/revitalization techniques aim to regenerate dentin and pulp using endogenous cells. Clinically, revitalization has successfully created new vital tissue in necrotic permanent teeth with an open apex; however, there is no evidence of new odontoblasts, pulp tissue, or predictable extension in root length. Although the response is reparative rather than regenerative, exciting opportunities to improve these biologically-based strategies remain by (1) efficiently sequestering dentin-matrix-components (DMCs) using irrigants and dental materials (2) designing next-generation GF-releasing scaffold materials and (3) utilizing other sources of GF such as cells and plasma-rich plasma and plasma-rich fibrin. SUMMARY: GFs can promote reparative-dentinogenesis and pulp-like tissue formation. The future development and clinical approval of GF-functionalized-scaffolds is a priority; however, current focus should be to harness DMCs and target the interaction of stem cells and GFs.

20.
Sci Rep ; 7(1): 16651, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29192201

RESUMEN

Molecular imprinting technique enables the selective binding of nanoscale target molecules to a polymer film, within which their chemical structure is transcribed. Here, we report the successful production of mixed bacterial imprinted film (BIF) from several food poisoning bacteria by the simultaneous imprinting of their nanoscale surface chemical structures (SCS), and provide highly selective trapping of original micron-scale bacteria used in the production process of mixed BIF even for multiple kinds of bacteria in real samples. Particularly, we reveal the rapid specific identification of E. coli group serotypes (O157:H7 and O26:H11) using an alternating electric field and a quartz crystal microbalance. Furthermore, we have performed the detailed physicochemical analysis of the specific binding of SCS and molecular recognition sites (MRS) based on the dynamic Monte Carlo method under taking into account the electromagnetic interaction. The dielectrophoretic selective trapping greatly depends on change in SCS of bacteria damaged by thermal treatment, ultraviolet irradiation, or antibiotic drugs, which can be well explained by the simulation results. Our results open the avenue for an innovative means of specific and rapid detection of unknown bacteria for food safety and medicine from a nanoscale viewpoint.


Asunto(s)
Adhesión Bacteriana , Fenómenos Fisiológicos Bacterianos , Polímeros , Microbiología de Alimentos/métodos , Viabilidad Microbiana , Impresión Molecular , Polímeros/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...