Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 19(12): e1011089, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38150455

RESUMEN

Axon regeneration requires actomyosin interaction, which generates contractile force and pulls the regenerating axon forward. In Caenorhabditis elegans, TLN-1/talin promotes axon regeneration through multiple down-stream events. One is the activation of the PAT-3/integrin-RHO-1/RhoA GTPase-LET-502/ROCK (Rho-associated coiled-coil kinase)-regulatory non-muscle myosin light-chain (MLC) phosphorylation signaling pathway, which is dependent on the MLC scaffolding protein ALP-1/ALP-Enigma. The other is mediated by the F-actin-binding protein DEB-1/vinculin and is independent of the MLC phosphorylation pathway. In this study, we identified the svh-7/rtkn-1 gene, encoding a homolog of the RhoA-binding protein Rhotekin, as a regulator of axon regeneration in motor neurons. However, we found that RTKN-1 does not function in the RhoA-ROCK-MLC phosphorylation pathway in the regulation of axon regeneration. We show that RTKN-1 interacts with ALP-1 and the vinculin-binding protein SORB-1/vinexin, and that SORB-1 acts with DEB-1 to promote axon regeneration. Thus, RTKN-1 links the DEB-1-SORB-1 complex to ALP-1 and physically connects phosphorylated MLC on ALP-1 to the actin cytoskeleton. These results suggest that TLN-1 signaling pathways coordinate MLC phosphorylation and recruitment of phosphorylated MLC to the actin cytoskeleton during axon regeneration.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Talina/metabolismo , Axones/metabolismo , Vinculina , Regeneración Nerviosa/genética , Fosforilación , Quinasas Asociadas a rho/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
2.
Development ; 150(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36458527

RESUMEN

Ramified, polarized protoplasmic astrocytes interact with synapses via perisynaptic astrocyte processes (PAPs) to form tripartite synapses. These astrocyte-synapse interactions mutually regulate their structures and functions. However, molecular mechanisms for tripartite synapse formation remain elusive. We developed an in vitro co-culture system for mouse astrocytes and neurons that induced astrocyte ramifications and PAP formation. Co-cultured neurons were required for astrocyte ramifications in a neuronal activity-dependent manner, and synaptically-released glutamate and activation of astrocytic mGluR5 metabotropic glutamate receptor were likely involved in astrocyte ramifications. Astrocytic Necl2 trans-interacted with axonal Necl3, inducing astrocyte-synapse interactions and astrocyte functional polarization by recruiting EAAT1/2 glutamate transporters and Kir4.1 K+ channel to the PAPs, without affecting astrocyte ramifications. This Necl2/3 trans-interaction increased functional synapse number. Thus, astrocytic Necl2, synaptically-released glutamate and axonal Necl3 cooperatively formed tripartite glutamatergic synapses in vitro. Studies on hippocampal mossy fiber synapses in Necl3 knockout and Necl2/3 double knockout mice confirmed these previously unreported mechanisms for astrocyte-synapse interactions and astrocyte functional polarization in vivo.


Asunto(s)
Ácido Glutámico , Sinapsis , Ratones , Animales , Sinapsis/fisiología , Ratones Noqueados , Ácido Glutámico/farmacología , Astrocitos/fisiología , Fibras Musgosas del Hipocampo
3.
J Neurosci ; 42(5): 720-730, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34862187

RESUMEN

Chemical communication controls a wide range of behaviors via conserved signaling networks. Axon regeneration in response to injury is determined by the interaction between the extracellular environment and intrinsic growth potential. In this study, we investigated the role of chemical signaling in axon regeneration in Caenorhabditis elegans We find that the enzymes involved in ascaroside pheromone biosynthesis, ACOX-1.1, ACOX-1.2, and DAF-22, participate in axon regeneration by producing a dauer-inducing ascaroside, ascr#5. We demonstrate that the chemoreceptor genes, srg-36 and srg-37, which encode G-protein-coupled receptors for ascr#5, are required for adult-specific axon regeneration. Furthermore, the activating mutation in egl-30 encoding Gqα suppresses axon regeneration defective phenotype in acox-1.1 and srg-36 srg-37 mutants. Therefore, the ascaroside signaling system provides a unique example of a signaling molecule that regulates the regenerative pathway in the nervous system.SIGNIFICANCE STATEMENT In Caenorhabditis elegans, axon regeneration is positively regulated by the EGL-30 Gqα-JNK MAP kinase cascade. However, it remains unclear what signals activate the EGL-30 pathway in axon regeneration. Here, we show that SRG-36 and SRG-37 act as upstream G-protein-coupled receptors (GPCRs) that activate EGL-30. C. elegans secretes a family of small-molecule pheromones called ascarosides, which serve various functions in chemical signaling. SRG-36 and SRG-37 are GPCRs for the dauer-inducing ascaroside ascr#5. Consistent with this, we found that ascr#5 activates the axon regeneration pathway via SRG-36/SRG-37 and EGL-30. Thus, ascaroside signaling promotes axon regeneration by activating the GPCR-Gqα pathway.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Regeneración Nerviosa/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Receptores Acoplados a Proteínas G/genética
4.
J Neurosci ; 41(40): 8309-8320, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34429379

RESUMEN

The postinjury regenerative capacity of neurons is known to be mediated by a complex interaction of intrinsic regenerative pathways and external cues. In Caenorhabditis elegans, the initiation of axon regeneration is regulated by the nonmuscle myosin light chain-4 (MLC-4) phosphorylation signaling pathway. In this study, we have identified svh-16/cdk-14, a mammalian CDK14 homolog, as a positive regulator of axon regeneration in motor neurons. We then isolated the CDK-14-binding protein MIG-5/Disheveled (Dsh) and found that EGL-20/Wnt and the MIG-1/Frizzled receptor (Fz) are required for efficient axon regeneration. Further, we demonstrate that CDK-14 activates EPHX-1, the C. elegans homolog of the mammalian ephexin Rho-type GTPase guanine nucleotide exchange factor (GEF), in a kinase-independent manner. EPHX-1 functions as a GEF for the CDC-42 GTPase, inhibiting myosin phosphatase, which maintains MLC-4 phosphorylation. These results suggest that CDK14 activates the RhoGEF-CDC42-MLC phosphorylation axis in a noncanonical Wnt signaling pathway that promotes axon regeneration.SIGNIFICANCE STATEMENT Noncanonical Wnt signaling is mediated by Frizzled receptor (Fz), Disheveled (Dsh), Rho-type GTPase, and nonmuscle myosin light chain (MLC) phosphorylation. This study identified svh-16/cdk-14, which encodes a mammalian CDK14 homolog, as a regulator of axon regeneration in Caenorhabditis elegans motor neurons. We show that CDK-14 binds to MIG-5/Dsh, and that EGL-20/Wnt, MIG-1/Fz, and EPHX-1/RhoGEF are required for axon regeneration. The phosphorylation-mimetic MLC-4 suppressed axon regeneration defects in mig-1, cdk-14, and ephx-1 mutants. CDK-14 mediates kinase-independent activation of EPHX-1, which functions as a guanine nucleotide exchange factor for CDC-42 GTPase. Activated CDC-42 inactivates myosin phosphatase and thereby maintains MLC phosphorylation. Thus, the noncanonical Wnt signaling pathway controls axon regeneration via the CDK-14-EPHX-1-CDC-42-MLC phosphorylation axis.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Regeneración Nerviosa/fisiología , Vía de Señalización Wnt/fisiología , Animales , Animales Modificados Genéticamente , Células COS , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Chlorocebus aethiops , Quinasas Ciclina-Dependientes/genética
5.
J Neurosci ; 41(22): 4754-4767, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33963050

RESUMEN

Axon regeneration is an evolutionarily conserved process essential for restoring the function of damaged neurons. In Caenorhabditis elegans hermaphrodites, initiation of axon regeneration is regulated by the RhoA GTPase-ROCK (Rho-associated coiled-coil kinase)-regulatory nonmuscle myosin light-chain phosphorylation signaling pathway. However, the upstream mechanism that activates the RhoA pathway remains unknown. Here, we show that axon injury activates TLN-1/talin via the cAMP-Epac (exchange protein directly activated by cAMP)-Rap GTPase cascade and that TLN-1 induces multiple downstream events, one of which is integrin inside-out activation, leading to the activation of the RhoA-ROCK signaling pathway. We found that the nonreceptor tyrosine kinase Src, a key mediator of integrin signaling, activates the Rho guanine nucleotide exchange factor EPHX-1/ephexin by phosphorylating the Tyr-568 residue in the autoinhibitory domain. Our results suggest that the C. elegans integrin signaling network regulates axon regeneration via the Src-RhoGEF-RhoA axis.SIGNIFICANCE STATEMENT The ability of axons to regenerate after injury is governed by cell-intrinsic regeneration pathways. We have previously demonstrated that the Caenorhabditis elegans RhoA GTPase-ROCK (Rho-associated coiled-coil kinase) pathway promotes axon regeneration by inducing MLC-4 phosphorylation. In this study, we found that axon injury activates TLN-1/talin through the cAMP-Epac (exchange protein directly activated by cAMP)-Rap GTPase cascade, leading to integrin inside-out activation, which promotes axonal regeneration by activating the RhoA signaling pathway. In this pathway, SRC-1/Src acts downstream of integrin activation and subsequently activates EPHX-1/ephexin RhoGEF by phosphorylating the Tyr-568 residue in the autoinhibitory domain. Our results suggest that the C. elegans integrin signaling network regulates axon regeneration via the Src-RhoGEF-RhoA axis.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Integrinas/metabolismo , Regeneración Nerviosa/fisiología , Proteína de Unión al GTP rhoA/metabolismo , Familia-src Quinasas/metabolismo , Animales , Axones/metabolismo , Caenorhabditis elegans , Transducción de Señal/fisiología
6.
J Neurosci ; 41(13): 2842-2853, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33593852

RESUMEN

The breast cancer susceptibility protein BRCA1 and its partner BRCA1-associated RING domain protein 1 (BARD1) form an E3-ubiquitin (Ub) ligase complex that acts as a tumor suppressor in mitotic cells. However, the roles of BRCA1-BARD1 in postmitotic cells, such as neurons, remain poorly defined. Here, we report that BRC-1 and BRD-1, the Caenorhabditis elegans orthologs of BRCA1 and BARD1, are required for adult-specific axon regeneration, which is positively regulated by the EGL-30 Gqα-diacylglycerol (DAG) signaling pathway. This pathway is downregulated by DAG kinase (DGK), which converts DAG to phosphatidic acid (PA). We demonstrate that inactivation of DGK-3 suppresses the brc-1 brd-1 defect in axon regeneration, suggesting that BRC-1-BRD-1 inhibits DGK-3 function. Indeed, we show that BRC-1-BRD-1 poly-ubiquitylates DGK-3 in a manner dependent on its E3 ligase activity, causing DGK-3 degradation. Furthermore, we find that axon injury causes the translocation of BRC-1 from the nucleus to the cytoplasm, where DGK-3 is localized. These results suggest that the BRC-1-BRD-1 complex regulates axon regeneration in concert with the Gqα-DAG signaling network. Thus, this study describes a new role for breast cancer proteins in fully differentiated neurons and the molecular mechanism underlying the regulation of axon regeneration in response to nerve injury.SIGNIFICANCE STATEMENT BRCA1-BRCA1-associated RING domain protein 1 (BARD1) is an E3-ubiquitin (Ub) ligase complex acting as a tumor suppressor in mitotic cells. The roles of BRCA1-BARD1 in postmitotic cells, such as neurons, remain poorly defined. We show here that Caenorhabditis elegans BRC-1/BRCA1 and BRD-1/BARD1 are required for adult-specific axon regeneration, a process that requires high diacylglycerol (DAG) levels in injured neurons. The DAG kinase (DGK)-3 inhibits axon regeneration by reducing DAG levels. We find that BRC-1-BRD-1 poly-ubiquitylates and degrades DGK-3, thereby keeping DAG levels elevated and promoting axon regeneration. Furthermore, we demonstrate that axon injury causes the translocation of BRC-1 from the nucleus to the cytoplasm, where DGK-3 is localized. Thus, this study describes a new role for BRCA1-BARD1 in fully-differentiated neurons.


Asunto(s)
Axones/metabolismo , Diacilglicerol Quinasa/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Regeneración Nerviosa/fisiología , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Células COS , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Chlorocebus aethiops , Diacilglicerol Quinasa/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética
7.
J Neurosci ; 41(11): 2373-2381, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33514673

RESUMEN

In Caenorhabditis elegans, axon regeneration is activated by a signaling cascade through the receptor tyrosine kinase (RTK) SVH-2. Axonal injury induces svh-2 gene expression by degradation of the Mad-like transcription factor MDL-1. In this study, we identify the svh-24/sdz-33 gene encoding a protein containing F-box and F-box-associated domains as a regulator of axon regeneration in motor neurons. We find that sdz-33 is required for axon injury-induced svh-2 expression. SDZ-33 targets MDL-1 for poly-ubiquitylation and degradation. Furthermore, we demonstrate that SDZ-33 promotes axotomy-induced nuclear degradation of MDL-1, resulting in the activation of svh-2 expression in animals. These results suggest that the F-box protein is required for RTK signaling in the control of axon regeneration.SIGNIFICANCE STATEMENT In Caenorhabditis elegans, axon regeneration is positively regulated by the growth factor SVH-1 and its receptor tyrosine kinase SVH-2. Expression of the svh-2 gene is induced by axonal injury via the Ets-like transcription factor ETS-4, whose transcriptional activity is inhibited by the Mad-like transcription factor MDL-1. Axon injury leads to the degradation of MDL-1, and this is linked to the activation of ETS-4 transcriptional activity. In this study, we identify the sdz-33 gene encoding a protein containing an F-box domain as a regulator of axon regeneration. We demonstrate that MDL-1 is poly-ubiquitylated and degraded through the SDZ-33-mediated 26S proteasome pathway. These results reveal that an F-box protein promotes axon regeneration by degrading the Mad transcription factor.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Proteínas de Unión al ADN/fisiología , Proteínas F-Box/fisiología , Regeneración Nerviosa/fisiología , Aminoácidos/metabolismo , Animales , Animales Modificados Genéticamente , Axones/fisiología , Axotomía , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Proteínas F-Box/genética , Neuronas Motoras/fisiología , Regeneración Nerviosa/genética , Plásmidos , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/fisiología , Ubiquitina
8.
J Biochem ; 167(5): 433-439, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32091576

RESUMEN

Axon regeneration following nerve injury is a highly conserved process in animals. The nematode Caenorhabditis elegans is an excellent model for investigating the molecular mechanisms of axon regeneration. Recent studies using C. elegans have shown that the c-Jun N-terminal kinase (JNK) plays the important role in axon regeneration. Furthermore, many factors have been identified that act upstream of the JNK cascade after axotomy. This review introduces these factors and describes their roles during the regulation of axon regeneration.


Asunto(s)
Axones/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Regeneración Nerviosa , Factores de Transcripción/metabolismo , Animales , Transducción de Señal
9.
Front Aging Neurosci ; 12: 609911, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33776740

RESUMEN

The hypothalamus plays a central role in homeostasis and aging. The hypothalamic arcuate nucleus (ARC) controls homeostasis of food intake and energy expenditure and retains adult neural stem cells (NSCs)/progenitor cells. Aging induces the loss of NSCs and the enhancement of inflammation, including the activation of glial cells in the ARC, but aging-associated alterations of the hypothalamic cells remain obscure. Here, we identified Sox2 and NeuN double-positive cells in a subpopulation of cells in the mouse ARC. These cells were reduced in number with aging, although NeuN-positive neuronal cells were unaltered in the total number. Diet-induced obesity mice fed with high-fat diet presented a similar hypothalamic alteration to aged mice. This study provides a new insight into aging-induced changes in the hypothalamus.

10.
EMBO Rep ; 20(10): e47517, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31393064

RESUMEN

In Caenorhabditis elegans, the JNK MAP kinase (MAPK) pathway is important for axon regeneration. The JNK pathway is activated by a signaling cascade consisting of the growth factor SVH-1 and its receptor tyrosine kinase SVH-2. Expression of the svh-2 gene is induced by axonal injury in a process involving the transcription factors ETS-4 and CEBP-1. Here, we find that svh-14/mxl-1, a gene encoding a Max-like transcription factor, is required for activation of svh-2 expression in response to axonal injury. We show that MXL-1 binds to and inhibits the function of TDPT-1, a C. elegans homolog of mammalian tyrosyl-DNA phosphodiesterase 2 [TDP2; also called Ets1-associated protein II (EAPII)]. Deletion of tdpt-1 suppresses the mxl-1 defect, but not the ets-4 defect, in axon regeneration. TDPT-1 induces SUMOylation of ETS-4, which inhibits ETS-4 transcriptional activity, and MXL-1 counteracts this effect. Thus, TDPT-1 interacts with two different transcription factors in axon regeneration.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Regeneración Nerviosa , Hidrolasas Diéster Fosfóricas/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Sumoilación , Factores de Transcripción/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Modelos Biológicos , Neuronas Motoras/metabolismo , Fosforilación , Unión Proteica , Transcripción Genética
11.
Genetics ; 213(2): 491-500, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31371405

RESUMEN

Axon regeneration following neuronal injury is an important repair mechanism that is not well understood at present. In Caenorhabditis elegans, axon regeneration is regulated by DDR-2, a receptor tyrosine kinase (RTK) that contains a discoidin domain and modulates the Met-like SVH-2 RTK-JNK MAP kinase signaling pathway. Here, we describe the svh-10/sqv-3 and svh-11 genes, which encode components of a conserved glycosylation pathway, and show that they modulate axon regeneration in C. elegans Overexpression of svh-2, but not of ddr-2, can suppress the axon regeneration defect observed in svh-11 mutants, suggesting that SVH-11 functions between DDR-2 and SVH-2 in this glycosylation pathway. Furthermore, we found that DDR-2 is N-glycosylated at the Asn-141 residue located in its discoidin domain, and mutation of this residue caused an axon regeneration defect. These findings indicate that N-linked glycosylation plays an important role in axon regeneration in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Receptor con Dominio Discoidina 2/genética , Fucosiltransferasas/genética , Regeneración Nerviosa/genética , Proteínas Tirosina Quinasas Receptoras/genética , Animales , Axones/metabolismo , Axones/fisiología , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Receptores con Dominio Discoidina/genética , Glicosilación , Sistema de Señalización de MAP Quinasas/genética , Mutación , Neuronas/metabolismo
12.
J Neurosci ; 39(29): 5662-5672, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31109965

RESUMEN

Axon regeneration is a conserved mechanism induced by axon injury that initiates a neuronal response leading to regrowth of the axon. In Caenorhabditis elegans, the initiation of axon regeneration is regulated by the JNK MAP kinase (MAPK) pathway. We have previously identified a number of genes affecting the JNK pathway using an RNAi-based screen. Analysis of these genes, called the svh genes, has shed new light on the regulation of axon regeneration, revealing the involvement of a signaling cascade consisting of a growth factor SVH-1 and its receptor, the tyrosine kinase SVH-2. Here, we characterize the svh-6/tns-1 gene, which is a homolog of mammalian tensin, and show that it is a positive regulator of axon regeneration in motor neurons. We demonstrate that TNS-1 interacts with tyrosine-autophosphorylated SVH-2 and the integrin ß subunit PAT-3 via its SH2 and PTB domains, respectively, to promote axon regeneration. These results suggest that TNS-1 acts as an adaptor to link the SVH-2 and integrin signaling pathways.SIGNIFICANCE STATEMENT The Caenorhabditis elegans JNK MAPK pathway regulates the initiation of axon regeneration. Previously, we showed that a signaling cascade consisting of the HGF-like growth factor SVH-1 and its Met-like receptor tyrosine kinase SVH-2 promotes axon regeneration through activation of the JNK pathway. In this study, we show that the C. elegans tensin, TNS-1, is required for efficient regeneration after axon injury. Phosphorylation of SVH-2 on tyrosine mediates its interaction with the SH2 domain of TNS-1 to positively regulate axon regeneration. Furthermore, TNS-1 interacts via its PTB domain with the integrin ß subunit PAT-3. These results suggest that TNS-1 plays a critical role in the regulation of axon regeneration by linking the SVH-2 and integrin signaling pathways.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Regeneración Nerviosa/fisiología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Tensinas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Células COS , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Chlorocebus aethiops , Metionina/genética , Metionina/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal/fisiología , Tensinas/genética
13.
Cell Rep ; 24(7): 1880-1889, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30110643

RESUMEN

The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. However, the mechanisms regulating axon regeneration are not well understood. Here, we identify the brc-2 gene encoding a homolog of the mammalian BRCA2 tumor suppressor as a regulator of axon regeneration in Caenorhabditis elegans motor neurons. We show that the RHO-1/Rho GTPase-LET-502/ROCK (Rho-associated coiled-coil kinase)-regulatory non-muscle myosin light-chain (MLC-4/MLC) phosphorylation signaling pathway regulates axon regeneration. BRC-2 functions between RHO-1 and LET-502, suggesting that BRC-2 is required for the activation of LET-502 by RHO-1-GTP. We also find that one component that interacts with BRC-2, the ALP (α-actinin-associated LIM protein)/Enigma protein ALP-1, is required for regeneration and acts between LET-502 and MLC-4 phosphorylation. Furthermore, we demonstrate that ALP-1 associates with LET-502 and MLC-4. Thus, ALP-1 serves as a platform to activate MLC-4 phosphorylation mediated by the RHO-1-LET-502 signaling pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Proteínas con Dominio LIM/genética , Cadenas Ligeras de Miosina/genética , Regeneración Nerviosa/genética , Proteínas de Unión al GTP rho/genética , Quinasas Asociadas a rho/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Axotomía/métodos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Proteínas con Dominio LIM/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Cadenas Ligeras de Miosina/metabolismo , Proyección Neuronal/genética , Plasticidad Neuronal/genética , Fosforilación , Unión Proteica , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo
14.
Nat Commun ; 9(1): 3099, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30082731

RESUMEN

Following axon injury, a cascade of signaling events is triggered to initiate axon regeneration. However, the mechanisms regulating axon regeneration are not well understood at present. In Caenorhabditis elegans, axon regeneration utilizes many of the components involved in phagocytosis, including integrin and Rac GTPase. Here, we identify the transthyretin (TTR)-like protein TTR-11 as a component functioning in axon regeneration upstream of integrin. We show that TTR-11 binds to both the extracellular domain of integrin-α and phosphatidylserine (PS). Axon injury induces the accumulation of PS around the injured axons in a manner dependent on TTR-11, the ABC transporter CED-7, and the caspase CED-3. Furthermore, we demonstrate that CED-3 activates CED-7 during axon regeneration. Thus, TTR-11 functions to link the PS injury signal to activation of the integrin pathway, which then initiates axon regeneration.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Fosfatidilserinas/metabolismo , Transducción de Señal , Animales , Animales Modificados Genéticamente , Apoptosis , Axones/metabolismo , Caspasas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Integrinas/metabolismo , Lípidos/química , Mutación , Regeneración Nerviosa , Fagocitosis , Plásmidos/metabolismo , Proteínas de Unión al GTP rac/metabolismo
15.
Bio Protoc ; 7(11): e2312, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34541078

RESUMEN

Organisms have developed many protective systems to reduce the toxicity from heavy metals. The nematode Caenorhabditis elegans has been widely used to determine the protective mechanisms against heavy metals. Responses against heavy metals can be monitored by expression of reporter genes, while sensitivity can be determined by quantifying growth or survival rate following exposure to heavy metals.

16.
PLoS Genet ; 12(12): e1006475, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27984580

RESUMEN

The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. However, the signaling pathways that orchestrate axon regeneration are not well understood. In Caenorhabditis elegans, initiation of axon regeneration is positively regulated by SVH-2 Met-like growth factor receptor tyrosine kinase (RTK) signaling through the JNK MAPK pathway. Here we show that SVH-4/DDR-2, an RTK containing a discoidin domain that is activated by collagen, and EMB-9 collagen type IV regulate the regeneration of neurons following axon injury. The scaffold protein SHC-1 interacts with both DDR-2 and SVH-2. Furthermore, we demonstrate that overexpression of svh-2 and shc-1 suppresses the delay in axon regeneration observed in ddr-2 mutants, suggesting that DDR-2 functions upstream of SVH-2 and SHC-1. These results suggest that DDR-2 modulates the SVH-2-JNK pathway via SHC-1. We thus identify two different RTK signaling networks that play coordinated roles in the regulation of axonal regeneration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Caenorhabditis elegans/genética , Receptor con Dominio Discoidina 2/genética , Regeneración Nerviosa/genética , Neuronas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Animales , Axones/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/metabolismo , Dominio Discoidina/genética , Receptor con Dominio Discoidina 2/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...